darknet训练自身数据集的小问题

1.首先看数据集是否有非jpg格式图片

2.sub_batch = batch/subdivision, 实际在每个sub_batch后先不迭代,等整个batch计算完之后迭代一次。降低显存要求

3.起初测试集的置信度阈值设置太低0.25,导致最后有些低置信度阈值的box(比如0.25,0.37)没有被抑制掉。一般设置到0.5左右。

4.控制台命令行训练代码理解(控制台命令行调用darknet框架,同理调用其他):

      darknet.exe      detector   train   data/img.data    yolo-obj.cfg   darknet53.conv.74  -map

        首先darknet.exe找到函数执行入口,相当于找到main函数的位置。

后面是形参列表(argc,argv)  argv[0]是当前进程的完整执行路径,arg[1] = = detector,darknet的main函数里有strmp(argv[1],"detector") == 0,则执行函数体run_detector(argc, argv),进入run_detector函数,进行第二个参数判断argv[2],如训练argv[2] = = train,则执行函数 train_detector(),

如darknet.exe   detector  train  data/img.data  yolo-obj.cfg  darknet53.conv.74  -map

      data/img.data ==  datacfg

       yolo-obj.cfg  == cfg

      darknet53.conv.74 == weights

      -map == calc_map

1 int calc_map = find_arg(argc, argv, "-map");
2 if (0 == strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels, outfile, letter_box);
3     else if (0 == strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show, calc_map, mjpeg_port, show_imgs);
4     else if (0 == strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
5     else if (0 == strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
6     else if (0 == strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh, iou_thresh, map_points, letter_box, NULL);
7     else if (0 == strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show);

 

 有calc_map会进入以下函数体,做mAP计算。 此处可以修改计算一次mAP的迭代次数。修改——重新编译——再训练。

1 int calc_map_for_each = 4 * train_images_num / (net.batch * net.subdivisions);  // calculate mAP for each 4 Epochs
2         calc_map_for_each = fmax(calc_map_for_each, 100);
3         int next_map_calc = iter_map + calc_map_for_each;
4         next_map_calc = fmax(next_map_calc, net.burn_in);
5         next_map_calc = fmax(next_map_calc, 400);
6         if (calc_map) {
7             printf("\n (next mAP calculation at %d iterations) ", next_map_calc);
8             if (mean_average_precision > 0) printf("\n Last accuracy mAP@0.5 = %2.2f %%, best = %2.2f %% ", mean_average_precision * 100, best_map * 100);
9         }

 

5.burn in参数

框架将burn in次前的迭代时,学习率更新策略为从小到大;之后的为递减。

小样本要将burn in 适当调小,加快收敛。大概为imgs/batch_size的10—20倍

posted @ 2019-11-18 16:18  Parallax  阅读(662)  评论(0编辑  收藏  举报