Python调用C++动态库,实现图像拼接(调用输出结果有问题)

  1 #include <iostream>
  2 #include <fstream>
  3 #include <string>
  4 #include "opencv2/opencv_modules.hpp"
  5 #include <opencv2/core/utility.hpp>
  6 #include "opencv2/imgcodecs.hpp"
  7 #include "opencv2/highgui.hpp"
  8 #include "opencv2/stitching/detail/autocalib.hpp"
  9 #include "opencv2/stitching/detail/blenders.hpp"
 10 #include "opencv2/stitching/detail/timelapsers.hpp"
 11 #include "opencv2/stitching/detail/camera.hpp"
 12 #include "opencv2/stitching/detail/exposure_compensate.hpp"
 13 #include "opencv2/stitching/detail/matchers.hpp"
 14 #include "opencv2/stitching/detail/motion_estimators.hpp"
 15 #include "opencv2/stitching/detail/seam_finders.hpp"
 16 #include "opencv2/stitching/detail/warpers.hpp"
 17 #include "opencv2/stitching/warpers.hpp"
 18 #ifdef HAVE_OPENCV_XFEATURES2D
 19 #include "opencv2/xfeatures2d/nonfree.hpp"
 20 #endif
 21 #define ENABLE_LOG 1
 22 #define LOG(msg) std::cout << msg
 23 #define LOGLN(msg) std::cout << msg << std::endl
 24 using namespace std;
 25 using namespace cv;
 26 using namespace cv::detail;
 27 // Default command line args
 28 
 29 #if 1
 30 #define DLL_API __declspec(dllexport)
 31 #else
 32 #define DLL_API __declspec(dllimport)
 33 #endif
 34 
 35 
 36 extern "C" { //由于编译过程的原因,python一般只支持c的接口
 37     typedef struct ImageBase {
 38         int w;                   //图像的宽
 39         int h;                    //图像的高
 40         int c;                    //通道数
 41         unsigned char *data;    //我们要写python和c++交互的数据结构,0-255的单字符指针
 42     }ImageMeta;
 43     //typedef ImageBase ImageMeta;
 44 
 45     DLL_API int Stitch(ImageMeta *im1, ImageMeta *im2);//函数导出,要改
 46 
 47 };
 48 
 49 //vector<String> img_names;
 50 int num_images;
 51 bool preview = false;
 52 bool try_cuda = false;
 53 double work_megapix = 0.6;
 54 double seam_megapix = 0.1;
 55 double compose_megapix = -1;
 56 float conf_thresh = 1.f;
 57 #ifdef HAVE_OPENCV_XFEATURES2D
 58 string features_type = "surf";
 59 #else
 60 string features_type = "orb";
 61 #endif
 62 string matcher_type = "homography";
 63 string estimator_type = "homography";
 64 string ba_cost_func = "ray";
 65 string ba_refine_mask = "xxxxx";
 66 bool do_wave_correct = true;
 67 WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
 68 bool save_graph = false;
 69 std::string save_graph_to;
 70 string warp_type = "spherical";
 71 int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
 72 int expos_comp_nr_feeds = 1;
 73 int expos_comp_nr_filtering = 2;
 74 int expos_comp_block_size = 32;
 75 float match_conf = 0.3f;
 76 string seam_find_type = "gc_color";
 77 int blend_type = Blender::MULTI_BAND;
 78 int timelapse_type = Timelapser::AS_IS;//延时摄影
 79 float blend_strength = 5;
 80 string result_name = "D:/result.jpg";//
 81 bool timelapse = false;//首先定义timelapse的默认布尔类型为False
 82 int range_width = -1;
 83 
 84 DLL_API int Stitch(ImageMeta *im1, ImageMeta *im2)//入参两个数组指针,出参一个数组指针
 85 //vector<Mat> img_list
 86 {//一个int数;一个图片类型的列表
 87 //predict先判断长度 然后长度作为一个参数传给
 88     //preview = true;
 89     //try_cuda = true;
 90     //preview = true;
 91     //result = 'D:/result.jpg';
 92     //work_megapix = -1;
 93     //features_type = "orb";
 94 
 95     Mat img1 = Mat::zeros(Size(im1->w, im1->h), CV_8UC3);
 96     //先从输入的指针对象提取w,h,data;将python传来的参数转变成C处理的格式。用的是相同的结构:结构体。
 97     img1.data = im1->data;
 98 
 99     Mat img2 = Mat::zeros(Size(im2->w, im2->h), CV_8UC3);
100     //先从输入的指针对象提取w,h,data;将python传来的参数转变成C处理的格式。用的是相同的结构:结构体。
101     img2.data = im2->data;
102 
103 
104     //Mat img1, img2;
105     //img1 = imread("D:/1Hill.jpg");
106     //img2 = imread("D:/2Hill.jpg");
107     vector<Mat> ALLimages(2);
108     ALLimages[0] = img1.clone();
109     ALLimages[1] = img2.clone();
110     //img_names.push_back("D:/1Hill.jpg");
111     //img_names.push_back("D:/2Hill.jpg");//??
112     //img_names.push_back("D:/3Hill.jpg");//??
113     num_images = 2;
114 #if ENABLE_LOG
115     int64 app_start_time = getTickCount();
116 #endif
117 #if 0
118     cv::setBreakOnError(true);
119 #endif
120     //int retval = parseCmdArgs(argc, argv);
121     //if (retval)
122         //return retval;
123     // Check if have enough images
124     //int num_images = static_cast<int>(img_names.size());
125     if (num_images < 2)
126     {
127         LOGLN("Need more images");
128         return -1;
129     }
130     double work_scale = 1, seam_scale = 1, compose_scale = 1;
131     bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
132     LOGLN("Finding features...");
133 #if ENABLE_LOG
134     int64 t = getTickCount();
135 #endif
136     Ptr<Feature2D> finder;
137     if (features_type == "orb")
138     {
139         finder = ORB::create();
140     }
141     else if (features_type == "akaze")
142     {
143         finder = AKAZE::create();
144     }
145 #ifdef HAVE_OPENCV_XFEATURES2D
146     else if (features_type == "surf")
147     {
148         finder = xfeatures2d::SURF::create();
149     }
150     else if (features_type == "sift") {
151         finder = xfeatures2d::SIFT::create();
152     }
153 #endif
154     else
155     {
156         cout << "Unknown 2D features type: '" << features_type << "'.\n";
157         return -1;
158     }
159     Mat full_img, img;
160     vector<ImageFeatures> features(num_images);
161     vector<Mat> images(num_images);
162     vector<Size> full_img_sizes(num_images);
163     double seam_work_aspect = 1;
164     for (int i = 0; i < num_images; ++i)
165     {
166         full_img = ALLimages[i];
167 
168         //获取一张图。imread_img -------->Mat
169         //先把一边调通了再去组合调试,分治
170         //full_img = img_list;
171         //python传进来n张图片的base64,可以转成读取后的图片。
172 
173         //先在c中定义图像HWC结构数组数组转一次 Mat, dll返回Mat结果,Mat转一次结构体
174         //main输入 Mat1,Mat2
175         //dll返回数组,python转化成cv2image,然后输出image2base64
176 
177         //full_image里面是读取的imread_img类型
178         //base64的size容易确定
179         //先在predict前提取到图片的整个Mat传给DLL
180         full_img_sizes[i] = full_img.size();//结果:full_img_sizes = [(500,300),(200,100)]
181         if (full_img.empty())
182         {
183             //LOGLN("Can't open image " << img_names[i]);//访问了空指针,和img_names有关
184             return -2;
185         }
186         if (work_megapix < 0)
187         {
188             img = full_img;
189             work_scale = 1;
190             is_work_scale_set = true;
191         }
192         else
193         {
194             if (!is_work_scale_set)
195             {
196                 work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
197                 is_work_scale_set = true;
198             }
199             resize(full_img, img, Size(), work_scale, work_scale, INTER_LINEAR_EXACT);
200         }
201         if (!is_seam_scale_set)
202         {
203             seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
204             seam_work_aspect = seam_scale / work_scale;
205             is_seam_scale_set = true;
206         }
207         computeImageFeatures(finder, img, features[i]);
208         features[i].img_idx = i;
209         LOGLN("Features in image #" << i + 1 << ": " << features[i].keypoints.size());
210         resize(full_img, img, Size(), seam_scale, seam_scale, INTER_LINEAR_EXACT);
211         images[i] = img.clone();
212         //循环是为了找到每张图的特征,然后把图片copy到images里
213     }
214     full_img.release();
215     img.release();
216     LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
217     LOG("Pairwise matching");
218 #if ENABLE_LOG
219     t = getTickCount();
220 #endif
221     vector<MatchesInfo> pairwise_matches;
222     Ptr<FeaturesMatcher> matcher;
223     if (matcher_type == "affine")
224         matcher = makePtr<AffineBestOf2NearestMatcher>(false, try_cuda, match_conf);
225     else if (range_width == -1)
226         matcher = makePtr<BestOf2NearestMatcher>(try_cuda, match_conf);
227     else
228         matcher = makePtr<BestOf2NearestRangeMatcher>(range_width, try_cuda, match_conf);
229     (*matcher)(features, pairwise_matches);
230     matcher->collectGarbage();
231     LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
232     // Check if we should save matches graph
233     //if (save_graph)
234     //{
235     //    LOGLN("Saving matches graph...");
236     //    ofstream f(save_graph_to.c_str());
237     //    f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
238     //}
239     // Leave only images we are sure are from the same panorama
240     vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
241     if (indices.size() != 2)//判断两个图片的相关性
242         return -1;
243 
244     if (num_images < 2)
245     {
246         LOGLN("Need more images");
247         return -1;
248     }
249     Ptr<Estimator> estimator;
250     if (estimator_type == "affine")
251         estimator = makePtr<AffineBasedEstimator>();
252     else
253         estimator = makePtr<HomographyBasedEstimator>();
254     vector<CameraParams> cameras;
255     if (!(*estimator)(features, pairwise_matches, cameras))
256     {
257         cout << "Homography estimation failed.\n";
258         return -1;
259     }
260     for (size_t i = 0; i < cameras.size(); ++i)
261     {
262         Mat R;
263         cameras[i].R.convertTo(R, CV_32F);
264         cameras[i].R = R;
265         //LOGLN("Initial camera intrinsics #" << indices[i] + 1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R);
266     }
267     Ptr<detail::BundleAdjusterBase> adjuster;
268     if (ba_cost_func == "reproj") adjuster = makePtr<detail::BundleAdjusterReproj>();
269     else if (ba_cost_func == "ray") adjuster = makePtr<detail::BundleAdjusterRay>();
270     else if (ba_cost_func == "affine") adjuster = makePtr<detail::BundleAdjusterAffinePartial>();
271     else if (ba_cost_func == "no") adjuster = makePtr<NoBundleAdjuster>();
272     else
273     {
274         cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n";
275         return -1;
276     }
277     adjuster->setConfThresh(conf_thresh);
278     Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
279     if (ba_refine_mask[0] == 'x') refine_mask(0, 0) = 1;
280     if (ba_refine_mask[1] == 'x') refine_mask(0, 1) = 1;
281     if (ba_refine_mask[2] == 'x') refine_mask(0, 2) = 1;
282     if (ba_refine_mask[3] == 'x') refine_mask(1, 1) = 1;
283     if (ba_refine_mask[4] == 'x') refine_mask(1, 2) = 1;
284     adjuster->setRefinementMask(refine_mask);
285     if (!(*adjuster)(features, pairwise_matches, cameras))
286     {
287         cout << "Camera parameters adjusting failed.\n";
288         return -1;
289     }
290     // Find median focal length
291     vector<double> focals;
292     for (size_t i = 0; i < cameras.size(); ++i)
293     {
294         //LOGLN("Camera #" << indices[i] + 1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R);
295         focals.push_back(cameras[i].focal);
296     }
297     sort(focals.begin(), focals.end());
298     float warped_image_scale;
299     if (focals.size() % 2 == 1)
300         warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
301     else
302         warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
303     if (do_wave_correct)
304     {
305         vector<Mat> rmats;
306         for (size_t i = 0; i < cameras.size(); ++i)
307             rmats.push_back(cameras[i].R.clone());
308         waveCorrect(rmats, wave_correct);
309         for (size_t i = 0; i < cameras.size(); ++i)
310             cameras[i].R = rmats[i];
311     }
312     LOGLN("Warping images (auxiliary)... ");
313 #if ENABLE_LOG
314     t = getTickCount();
315 #endif
316     vector<Point> corners(num_images);
317     vector<UMat> masks_warped(num_images);
318     vector<UMat> images_warped(num_images);
319     vector<Size> sizes(num_images);
320     vector<UMat> masks(num_images);
321     // Prepare images masks
322     for (int i = 0; i < num_images; ++i)
323     {
324         masks[i].create(images[i].size(), CV_8U);
325         masks[i].setTo(Scalar::all(255));
326     }
327     // Warp images and their masks
328     Ptr<WarperCreator> warper_creator;
329 #ifdef HAVE_OPENCV_CUDAWARPING
330     if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
331     {
332         if (warp_type == "plane")
333             warper_creator = makePtr<cv::PlaneWarperGpu>();
334         else if (warp_type == "cylindrical")
335             warper_creator = makePtr<cv::CylindricalWarperGpu>();
336         else if (warp_type == "spherical")
337             warper_creator = makePtr<cv::SphericalWarperGpu>();
338     }
339     else
340 #endif
341     {
342         if (warp_type == "plane")
343             warper_creator = makePtr<cv::PlaneWarper>();
344         else if (warp_type == "affine")
345             warper_creator = makePtr<cv::AffineWarper>();
346         else if (warp_type == "cylindrical")
347             warper_creator = makePtr<cv::CylindricalWarper>();
348         else if (warp_type == "spherical")
349             warper_creator = makePtr<cv::SphericalWarper>();
350         else if (warp_type == "fisheye")
351             warper_creator = makePtr<cv::FisheyeWarper>();
352         else if (warp_type == "stereographic")
353             warper_creator = makePtr<cv::StereographicWarper>();
354         else if (warp_type == "compressedPlaneA2B1")
355             warper_creator = makePtr<cv::CompressedRectilinearWarper>(2.0f, 1.0f);
356         else if (warp_type == "compressedPlaneA1.5B1")
357             warper_creator = makePtr<cv::CompressedRectilinearWarper>(1.5f, 1.0f);
358         else if (warp_type == "compressedPlanePortraitA2B1")
359             warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(2.0f, 1.0f);
360         else if (warp_type == "compressedPlanePortraitA1.5B1")
361             warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(1.5f, 1.0f);
362         else if (warp_type == "paniniA2B1")
363             warper_creator = makePtr<cv::PaniniWarper>(2.0f, 1.0f);
364         else if (warp_type == "paniniA1.5B1")
365             warper_creator = makePtr<cv::PaniniWarper>(1.5f, 1.0f);
366         else if (warp_type == "paniniPortraitA2B1")
367             warper_creator = makePtr<cv::PaniniPortraitWarper>(2.0f, 1.0f);
368         else if (warp_type == "paniniPortraitA1.5B1")
369             warper_creator = makePtr<cv::PaniniPortraitWarper>(1.5f, 1.0f);
370         else if (warp_type == "mercator")
371             warper_creator = makePtr<cv::MercatorWarper>();
372         else if (warp_type == "transverseMercator")
373             warper_creator = makePtr<cv::TransverseMercatorWarper>();
374     }
375     if (!warper_creator)
376     {
377         cout << "Can't create the following warper '" << warp_type << "'\n";
378         return 1;
379     }
380     Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
381     for (int i = 0; i < num_images; ++i)
382     {
383         Mat_<float> K;
384         cameras[i].K().convertTo(K, CV_32F);
385         float swa = (float)seam_work_aspect;
386         K(0, 0) *= swa; K(0, 2) *= swa;
387         K(1, 1) *= swa; K(1, 2) *= swa;
388         corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
389         sizes[i] = images_warped[i].size();
390         warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
391     }
392     vector<UMat> images_warped_f(num_images);
393     for (int i = 0; i < num_images; ++i)
394         images_warped[i].convertTo(images_warped_f[i], CV_32F);
395     LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
396     LOGLN("Compensating exposure...");
397 #if ENABLE_LOG
398     t = getTickCount();
399 #endif
400     Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
401     if (dynamic_cast<GainCompensator*>(compensator.get()))
402     {
403         GainCompensator* gcompensator = dynamic_cast<GainCompensator*>(compensator.get());
404         gcompensator->setNrFeeds(expos_comp_nr_feeds);
405     }
406     if (dynamic_cast<ChannelsCompensator*>(compensator.get()))
407     {
408         ChannelsCompensator* ccompensator = dynamic_cast<ChannelsCompensator*>(compensator.get());
409         ccompensator->setNrFeeds(expos_comp_nr_feeds);
410     }
411     if (dynamic_cast<BlocksCompensator*>(compensator.get()))
412     {
413         BlocksCompensator* bcompensator = dynamic_cast<BlocksCompensator*>(compensator.get());
414         bcompensator->setNrFeeds(expos_comp_nr_feeds);
415         bcompensator->setNrGainsFilteringIterations(expos_comp_nr_filtering);
416         bcompensator->setBlockSize(expos_comp_block_size, expos_comp_block_size);
417     }
418     compensator->feed(corners, images_warped, masks_warped);
419     LOGLN("Compensating exposure, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
420     LOGLN("Finding seams...");
421 #if ENABLE_LOG
422     t = getTickCount();
423 #endif
424     Ptr<SeamFinder> seam_finder;
425     if (seam_find_type == "no")
426         seam_finder = makePtr<detail::NoSeamFinder>();
427     else if (seam_find_type == "voronoi")
428         seam_finder = makePtr<detail::VoronoiSeamFinder>();
429     else if (seam_find_type == "gc_color")
430     {
431 #ifdef HAVE_OPENCV_CUDALEGACY
432         if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
433             seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR);
434         else
435 #endif
436             seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR);
437     }
438     else if (seam_find_type == "gc_colorgrad")
439     {
440 #ifdef HAVE_OPENCV_CUDALEGACY
441         if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
442             seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
443         else
444 #endif
445             seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
446     }
447     else if (seam_find_type == "dp_color")
448         seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR);
449     else if (seam_find_type == "dp_colorgrad")
450         seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR_GRAD);
451     if (!seam_finder)
452     {
453         cout << "Can't create the following seam finder '" << seam_find_type << "'\n";
454         return 1;
455     }
456     seam_finder->find(images_warped_f, corners, masks_warped);
457     LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
458     // Release unused memory
459     images.clear();
460     images_warped.clear();
461     images_warped_f.clear();
462     masks.clear();
463     LOGLN("Compositing...");
464 #if ENABLE_LOG
465     t = getTickCount();
466 #endif
467     Mat img_warped, img_warped_s;
468     Mat dilated_mask, seam_mask, mask, mask_warped;
469     Ptr<Blender> blender;
470     Ptr<Timelapser> timelapser;
471     //double compose_seam_aspect = 1;
472     double compose_work_aspect = 1;
473     for (int img_idx = 0; img_idx < num_images; ++img_idx)
474     {
475         //LOGLN("Compositing image #" << indices[img_idx] + 1);
476         // Read image and resize it if necessary
477         full_img = ALLimages[img_idx];
478         if (!is_compose_scale_set)
479         {
480             if (compose_megapix > 0)
481                 compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
482             is_compose_scale_set = true;
483             // Compute relative scales
484             //compose_seam_aspect = compose_scale / seam_scale;
485             compose_work_aspect = compose_scale / work_scale;
486             // Update warped image scale
487             warped_image_scale *= static_cast<float>(compose_work_aspect);
488             warper = warper_creator->create(warped_image_scale);
489             // Update corners and sizes
490             for (int i = 0; i < num_images; ++i)
491             {
492                 // Update intrinsics
493                 cameras[i].focal *= compose_work_aspect;
494                 cameras[i].ppx *= compose_work_aspect;
495                 cameras[i].ppy *= compose_work_aspect;
496                 // Update corner and size
497                 Size sz = full_img_sizes[i];
498                 Mat K;
499                 cameras[i].K().convertTo(K, CV_32F);
500                 Rect roi = warper->warpRoi(sz, K, cameras[i].R);
501                 corners[i] = roi.tl();
502                 sizes[i] = roi.size();
503             }
504         }
505         if (abs(compose_scale - 1) > 1e-1)//没用
506             resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT);
507         else
508             img = full_img;
509         full_img.release();
510         Size img_size = img.size();
511         Mat K;
512         cameras[img_idx].K().convertTo(K, CV_32F);
513         // Warp the current image
514         warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
515         // Warp the current image mask
516         mask.create(img_size, CV_8U);
517         mask.setTo(Scalar::all(255));
518         warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
519         // Compensate exposure
520         compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
521         img_warped.convertTo(img_warped_s, CV_16S);
522         img_warped.release();
523         img.release();
524         mask.release();
525         dilate(masks_warped[img_idx], dilated_mask, Mat());
526         resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT);
527         mask_warped = seam_mask & mask_warped;
528         if (!blender && !timelapse)//blender是False,timelapse也是False,这里运行了!
529         {//做multiband
530             blender = Blender::createDefault(blend_type, try_cuda);
531             Size dst_sz = resultRoi(corners, sizes).size();
532             float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
533             if (blend_width < 1.f)
534                 blender = Blender::createDefault(Blender::NO, try_cuda);
535             else if (blend_type == Blender::MULTI_BAND)
536             {
537                 MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(blender.get());
538                 mb->setNumBands(static_cast<int>(ceil(log(blend_width) / log(2.)) - 1.));
539                 LOGLN("Multi-band blender, number of bands: " << mb->numBands());
540             }
541             else if (blend_type == Blender::FEATHER)//未运行
542             {
543                 FeatherBlender* fb = dynamic_cast<FeatherBlender*>(blender.get());
544                 fb->setSharpness(1.f / blend_width);
545                 LOGLN("Feather blender, sharpness: " << fb->sharpness());
546             }
547             blender->prepare(corners, sizes);
548         }
549         else if (!timelapser && timelapse)//timelapse是假,timelapser是什么??没运行
550         {
551             timelapser = Timelapser::createDefault(timelapse_type);
552             timelapser->initialize(corners, sizes);
553             cout << "----------------------------运行---------------------------------" << endl;
554         }
555         // Blend the current image
556         if (timelapse)//默认是假
557         {
558             cout << "----------------------------运行2---------------------------------" << endl;
559         }
560         else
561         {//这里运行了两次,因为在循环体中,图片有两张
562             blender->feed(img_warped_s, mask_warped, corners[img_idx]);
563             cout << "----------------------------运行3---------------------------------" << endl;
564         }
565     }
566     if (!timelapse)//运行了
567     {
568         Mat result, result_mask;
569         blender->blend(result, result_mask);
570         LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
571         imwrite(result_name, result);
572         //(result.cols)*(result.rows)
573         memcpy(im2->data, result.clone().data, (result.cols)*(result.rows));//从哪里拷贝多少个字节。。
574         im2->w = result.cols;
575         im2->h = result.rows;
576         im2->c = 3;
577     }
578     LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
579     return 0;
580 }

 

 1 from ctypes import *
 2 from io import BytesIO
 3 import numpy as np
 4 import cv2
 5 
 6 
 7 # 写法是yolo的darknet.py里的
 8 
 9 def c_array(ctype, values):  # 把图像的数据转化为内存连续的 列表 , 使c++能使用这块内存
10     arr = (ctype * len(values))()
11     arr[:] = values
12     return arr
13 
14 
15 def array_to_image(arr):
16     c = arr.shape[2]
17     h = arr.shape[0]
18     w = arr.shape[1]
19     arr = arr.flatten()#转化成图片后成了一维的
20     data = c_array(c_uint8, arr)
21     im = IMAGE(w, h, c, data)#将读进来数组转化成c接受的形式,调用class IMAGE
22     return im
23 
24 
25 class IMAGE(Structure):  # 这里和ImgSegmentation.hpp里面的结构体保持一致。
26     _fields_ = [("w", c_int),
27                 ("h", c_int),
28                 ("c", c_int),
29                 ("data", POINTER(c_uint8))]
30 
31 
32 img1 = cv2.imread('D:/1Hill.jpg')
33 img2 = cv2.imread('D:/2Hill.jpg')
34 #h, w, c = img.shape[0], img.shape[1], img.shape[2]
35 #h, w, c = img.shape[0], img.shape[1], img.shape[2]
36 
37 #gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) * 0
38 #gray = np.reshape(gray, (h, w, 1))  # 一定要使用(h, w, 1),最后的1别忘。
39 im1 = array_to_image(img1)#这里是将读进来的cv_imread格式图片转化成结构体,一维的
40 im2 = array_to_image(img2)
41 #gray_img = array_to_image(gray)
42 
43 lib = cdll.LoadLibrary('./image_stiching.dll')  # 读取动态库文件
44 lib.Stitch.argtypes = [POINTER(IMAGE), POINTER(IMAGE)]  # 设置函数入参格式,声明采用指针传递。指定入参为2个数组指针,python里定义类型指针和C相反,类型在后。
45 #lib.Stitch.restype = c_int64
46 lib.Stitch(im1, im2)  # 执行函数,这里直接修改gray_img的内存数据。入参是非指针,python提取地址作为输入。因为函数原型是传递的指针,这里相当于POINTER会自动取输入im1,im2的指针作为入参。
47 ## 因此输入的内存数据会直接被改变。
48 y = im2.data  # 获取data,被改变传递改变的对象名
49 array_length = im2.h * im2.w
50 #转化为numpy的ndarray
51 buffer_from_memory = pythonapi.PyMemoryView_FromMemory  # 这个是python 3的使用方法,提取运算缓存
52 buffer_from_memory.restype = py_object                  #提取缓存返回的数据格式,以上两步是下一步从缓存中提取某个变量的结果必须的。
53 buffer = buffer_from_memory(y, array_length)                    #提取底层的缓存指针,指定提取缓存大小
54 img = np.frombuffer(buffer, dtype=np.uint8)                         #提取到缓存中的数组
55 print("----------------------")
56 print(img.shape)
57 img = np.reshape(img, (im2.h, im2.w,1))                   #改变缓存数组的格式,用于显示
58 print("-------2---------")
59 print(img.shape)
60 print(img)
61 cv2.imshow('test', img)
62 cv2.imwrite("D:/RESULT_PY.JPG",img)
63 cv2.waitKey(0)
64  

 

posted @ 2020-04-08 14:11  Parallax  阅读(707)  评论(0编辑  收藏  举报