HashMap、HashTable、ConcurrentHashMap
1、HashMap
众所周知 HashMap 底层是基于 数组 + 链表
组成的,不过在 jdk1.7 和 1.8 中具体实现稍有不同。
1.1、HashMap为什么线程不安全(hash碰撞与扩容导致)
HashMap的容量是有限的。当经过多次元素插入,使得HashMap达到一定饱和度时,Key映射位置发生冲突的几率会逐渐提高。
这时候,HashMap需要扩展它的长度,也就是进行Resize。
影响发生Resize的因素有两个:
1.Capacity
HashMap的当前长度。上一期曾经说过,HashMap的长度是2的幂。
2.LoadFactor
HashMap负载因子,默认值为0.75f。
衡量HashMap是否进行Resize的条件如下:
HashMap.Size >= Capacity * LoadFactor
1.扩容
创建一个新的Entry空数组,长度是原数组的2倍。
2.ReHash
遍历原Entry数组,把所有的Entry重新Hash到新数组。为什么要重新Hash呢?因为长度扩大以后,Hash的规则也随之改变。
/**
* Transfers all entries from current table to newTable.
*/
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
注意:下面的内容十分烧脑,请小伙伴们坐稳扶好。
1、此时达到Resize条件,两个线程各自进行Rezie的第一步,也就是扩容:
2、HashTable是线程安全的
但是HashTable线程安全的策略实现代价却太大了,简单粗暴, get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,相当于将所有的操作串行化,在竞争激烈的并发场景中性能就会非常差。
HashTable性能差主要是由于所有操作需要竞争同一把锁,而如果容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的"分段锁"思想。
3、ConcurrentHashMap
ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。
final Segment<K,V>[] segments;
Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)
在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。
(就按默认的ConcurrentLeve为16来讲,理论上就允许16个线程并发执行,有木有很酷)
所以,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。
Segment类似于HashMap,一个Segment维护着一个HashEntry数组,HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。
transient volatile HashEntry<K,V>[] table;
HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。
static final class HashEntry<K,V> {
final int hash;
final K key;
volatile V value;
volatile HashEntry<K,V> next;
//其他省略
}
我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法
初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。
Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;//负载因子
this.threshold = threshold;//阈值
this.table = tab;//主干数组即HashEntry数组
}
我们来看下ConcurrentHashMap的构造方法
从下面的的代码可以看出来
Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
//MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
//2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5
int sshift = 0;
//ssize 为segments数组长度,根据concurrentLevel计算得出
int ssize = 1;
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
//segmentShift和segmentMask这两个变量在定位segment时会用到,后面会详细讲
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//计算cap的大小,即Segment中HashEntry的数组长度,cap也一定为2的n次方.
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
//创建segments数组并初始化第一个Segment,其余的Segment延迟初始化
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0);
this.segments = ss;
}
put方法
从源码看出,put的主要逻辑也就两步:
1.定位segment并确保定位的Segment已初始化
2.调用Segment的put方法。
public V put(K key, V value) {
Segment<K,V> s;
//concurrentHashMap不允许key/value为空
if (value == null)
throw new NullPointerException();
//hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀
int hash = hash(key);
//返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}
get 方法
get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。
public V get(Object key) {
Segment<K,V> s;
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
//先定位Segment,再定位HashEntry
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
put 下concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);//tryLock不成功时会遍历定位到的HashEnry位置的链表(遍历主要是为了使CPU缓存链表),若找不到,则创建HashEntry。tryLock一定次数后(MAX_SCAN_RETRIES变量决定),则lock。若遍历过程中,由于其他线程的操作导致链表头结点变化,则需要重新遍历。
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;//定位HashEntry,可以看到,这个hash值在定位Segment时和在Segment中定位HashEntry都会用到,只不过定位Segment时只用到高几位。
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
//若c超出阈值threshold,需要扩容并rehash。扩容后的容量是当前容量的2倍。这样可以最大程度避免之前散列好的entry重新散列,具体在另一篇文章中有详细分析,不赘述。扩容并rehash的这个过程是比较消耗资源的。
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
如果满意,请打赏博主任意金额,感兴趣的在微信转账的时候,添加博主微信哦, 请下方留言吧。可与博主自由讨论哦
支付包 | 微信 | 微信公众号 |
---|---|---|