BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1013
题解:
由所有点到圆心的距离都是相等的,我们可以列出n个方程式,其中第$i$个是这样的:
$$\sum_{j=1}^{n} 2*(a_{vj}-a_{uj})*P_j=\sum_{j=1}^{n}-a_{uj}^2+a_{vj}^2$$
其中$v=i+1,u=i$
我们得到的解是$P$矩阵
代码:
/************************************************************** Problem: 1013 User: HarryGuo2012 Language: C++ Result: Accepted Time:0 ms Memory:1276 kb ****************************************************************/ #include<iostream> #include<vector> #include<cmath> #include<cstring> #include<iomanip> #define MAX_N 15 using namespace std; const double EPS=1e-8; double a[MAX_N][MAX_N]; int n; const int maxn=MAX_N; const double eps=1e-12; int equ,var;//equ个方程,var个变量 double x[maxn];//解集 bool free_x[maxn]; int sgn(double x) { return (x>eps)-(x<-eps); } // 高斯消元法解方程组(Gauss-Jordan elimination).(0表示无解,1表示唯一解,大于1表示无穷解,并返回自由变元的个数) int gauss() { equ = n, var = n;//多少个方程,多少个变量 int i, j, k; int max_r; // 当前这列绝对值最大的行. int col; // 当前处理的列. double temp; int free_x_num; int free_index; // 转换为阶梯阵. col = 0; // 当前处理的列. memset(free_x, true, sizeof(free_x)); for (k = 0; k < equ && col < var; k++, col++) { max_r = k; for (i = k + 1; i < equ; i++) { if (sgn(fabs(a[i][col]) - fabs(a[max_r][col])) > 0) max_r = i; } if (max_r != k) { // 与第k行交换. for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]); } if (sgn(a[k][col]) == 0) { // 说明该col列第k行以下全是0了,则处理当前行的下一列. k--; continue; } for (i = k + 1; i < equ; i++) { // 枚举要删去的行. if (sgn(a[i][col]) != 0) { temp = a[i][col] / a[k][col]; for (j = col; j < var + 1; j++) { a[i][j] = a[i][j] - a[k][j] * temp; } } } } for (i = k; i < equ; i++) { if (sgn(a[i][col]) != 0) return 0; } if (k < var) { for (i = k - 1; i >= 0; i--) { free_x_num = 0; for (j = 0; j < var; j++) { if (sgn(a[i][j]) != 0 && free_x[j]) free_x_num++, free_index = j; } if (free_x_num > 1) continue; temp = a[i][var]; for (j = 0; j < var; j++) { if (sgn(a[i][j]) != 0 && j != free_index) temp -= a[i][j] * x[j]; } x[free_index] = temp / a[i][free_index]; free_x[free_index] = 0; } return var - k; } for (i = var - 1; i >= 0; i--) { temp = a[i][var]; for (j = i + 1; j < var; j++) { if (sgn(a[i][j]) != 0) temp -= a[i][j] * x[j]; } x[i] = temp / a[i][i]; } return 1; } double point[MAX_N][MAX_N]; int main() { cin >> n; for (int i = 0; i < n + 1; i++) for (int j = 0; j < n; j++) cin >> point[i][j]; for (int i = 0; i < n; i++) { double tmp = 0; for (int j = 0; j < n; j++) { a[i][j] = 2 * (point[i + 1][j] - point[i][j]); tmp += point[i + 1][j] * point[i + 1][j] - point[i][j] * point[i][j]; } a[i][n] = tmp; } gauss(); for (int i = 0; i < n; i++) { cout << setprecision(3) << fixed << x[i]; if (i != n - 1)cout << " "; } cout << endl; return 0; }