POJ 3268 Silver Cow Party 最短路
原题链接:http://poj.org/problem?id=3268
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 15545 | Accepted: 7053 |
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10
Hint
Source
题意
有一只牛举办派对,其他的牛去参加,牛都会走最短路,并且派对结束还要回到自己家里。问哪头牛走的路径最长,输出最长路径。
题解
就跑两边spfa,正着反着跑两次。然后就搞定了。
代码
#include<iostream> #include<queue> #include<cstring> #include<algorithm> #include<vector> #include<cstdio> #define INF 1000006 #define MAX_N 1003 using namespace std; struct node { public: int u, c; node(int uu, int cc) : u(uu), c(cc) { } node() { } }; struct edge { public: int to, cost; edge(int t, int c) : to(t), cost(c) { } edge() { } }; queue<node> que; int n,m,x; void spfa(int s,vector<edge> G[],int d[]) { fill(d, d + n + 1, INF); que.push(node(s, 0)); d[s] = 0; while (que.size()) { node now = que.front(); que.pop(); if (now.c != d[now.u])continue; int u = now.u; for (int i = 0; i < G[u].size(); i++) { int v = G[u][i].to; int t = d[u] + G[u][i].cost; if (t < d[v]) { d[v] = t; que.push(node(v, t)); } } } } vector<edge> G[MAX_N],rG[MAX_N]; int d[MAX_N],rd[MAX_N]; int main() { scanf("%d%d%d", &n, &m, &x); for (int i = 0; i < m; i++) { int u, v, c; scanf("%d%d%d", &u, &v, &c); G[u].push_back(edge(v, c)); rG[v].push_back(edge(u, c)); } spfa(x, G, d); while (que.size())que.pop(); spfa(x, rG, rd); int ans = 0; for (int i = 1; i <= n; i++)ans = max(ans, d[i] + rd[i]); cout<<ans<<endl; return 0; }