摘要:
这节的主题感觉和training,testing关系不是很大,其根本线索在于铺垫并求解一个问题:为什么算法PLA可以正确的work?因为前面的知识告诉我们,只有当假设的个数有限的时候,我们才能比较确认我们得到坏的数据集的概率比较低,也就是说算法得出的假设和最佳假设在全局表现相同(错误率相等),可是PLA的假设是平面上的直线,不是无数个么?为什么可以正常泛化?为解释这个问题,有了这节以及下面几节的课程可以看到这个问题其实很重要,因为这是我们理解机器为啥能学习的关键一步,因为很多机器学习算法的假设看似都是无限的。下面这个图给出了理解机器为啥能学习的关键:即满足假设个数有限,采样数据足够大是算法泛化 阅读全文