【华东师附国庆模拟赛】Day2 1.矩阵

题目链接

在这里%一波$\mathscr{ZMY}$搭题目。

 

题意:

  给定$n\times n$的矩阵$A$,$B$,$m$次询问,求$C=A\times B$的子矩阵和。

  $1\le n\le 800,\; 1\le m\le 10^4,\; 0\le A_{i,j}\le 100$

 

分析:

  设询问子矩阵为$[i_1:i_2][j_1:j_2]$,则

  $\quad\sum\limits_{i=i_1}^{i_2}\sum\limits_{j=j_1}^{j_2}\sum\limits_{k=1}^{n}A[i][k]\times B[k][j]$

  $=\sum\limits_{k=1}^{n}\sum\limits_{i=i_1}^{i_2}A[i][k]\sum\limits_{j=j_1}^{j_2}B[k][j]$

  $=\sum\limits_{k=1}^{n}A[i_1:i_2][k]\times B[k][j_1:j_2]$

  于是$O(n^2)$预处理$A$每列的前缀和,$B$每行的前缀和,$O(n)$询问。

 

实现(100分):

复制代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
#define IL inline
#define UI unsigned int
#define RI register int
using namespace std;
typedef long long LL;
const int N=800;

IL void read(int &x){
    char ch;
    while(!isdigit(ch=getchar()));
    x=ch-'0';
    while(isdigit(ch=getchar()))
        x=(x<<3)+(x<<1)+ch-'0';
}

IL void read(int &x,int &y){
    read(x);    read(y);
}

IL void read(int &x,int &y,int &p,int &q){
    read(x);    read(y);    read(p);    read(q);
}

IL void read(LL &x){
    char ch;
    while(!isdigit(ch=getchar()));
    x=ch-'0';
    while(isdigit(ch=getchar()))
        x=(x<<3LL)+(x<<1LL)+ch-'0';
}

    int n,m;
    LL a[N+3][N+3],b[N+3][N+3];
    LL s1[N+3][N+3],s2[N+3][N+3];
    
IL LL sum1(int i1,int i2,int k){
    return s1[i2][k]-s1[i1-1][k];
}

IL LL sum2(int k,int j1,int j2){
    return s2[k][j2]-s2[k][j1-1];
}

int main(){
    read(n,m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            read(a[i][j]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            read(b[i][j]);
    
    memset(s1,0,sizeof s1);
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            s1[i][k]=s1[i-1][k]+a[i][k];
    memset(s2,0,sizeof s2);
    for(int k=1;k<=n;k++)
        for(int j=1;j<=n;j++)
            s2[k][j]=s2[k][j-1]+b[k][j];
    
    while(m--){
        int p1,p2,p3,p4;    read(p1,p2,p3,p4);
        if(p1>p3)swap(p1,p3);
        if(p2>p4)swap(p2,p4);
        
        LL ans=0;
        for(int k=1;k<=n;k++)
            ans+=sum1(p1,p3,k)*sum2(k,p2,p4);
        printf("%lld\n",ans);
        
    }

    return 0;

}
View Code
复制代码

 

小结:

  快速推式子上手。

posted @   汉谡  阅读(116)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示