3101: N皇后
3101: N皇后
Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 88 Solved: 41
[Submit][Status][Discuss]
Description
n*n的棋盘,在上面摆下n个皇后,使其两两间不能相互攻击…
Input
一个数n
Output
第i行表示在第i行第几列放置皇后
Sample Input
4
Sample Output
2
4
1
3
4
1
3
HINT
100%的数据3<n<1000000。输出任意一种合法解即可
Source
题解:一道神(dou)奇(bi)的题目,传说中貌似有种O(N)构造N皇后解的方法,具体为啥貌似也查不到,求神犇给出证明orzorzorz(引自N皇后的构造解法)
然后就是码代码了= =一、当n mod 6 != 2 或 n mod 6 != 3时,有一个解为:
2,4,6,8,...,n,1,3,5,7,...,n-1 (n为偶数)
2,4,6,8,...,n-1,1,3,5,7,...,n (n为奇数)
(上面序列第i个数为ai,表示在第i行ai列放一个皇后;... 省略的序列中,相邻两数以2递增。下同)
二、当n mod 6 == 2 或 n mod 6 == 3时,
(当n为偶数,k=n/2;当n为奇数,k=(n-1)/2)
k,k+2,k+4,...,n,2,4,...,k-2,k+3,k+5,...,n-1,1,3,5,...,k+1 (k为偶数,n为偶数)
k,k+2,k+4,...,n-1,2,4,...,k-2,k+3,k+5,...,n-2,1,3,5,...,k+1,n (k为偶数,n为奇数)
k,k+2,k+4,...,n-1,1,3,5,...,k-2,k+3,...,n,2,4,...,k+1 (k为奇数,n为偶数)
k,k+2,k+4,...,n-2,1,3,5,...,k-2,k+3,...,n-1,2,4,...,k+1,n (k为奇数,n为奇数)
1 /************************************************************** 2 Problem: 3101 3 User: HansBug 4 Language: Pascal 5 Result: Accepted 6 Time:1832 ms 7 Memory:224 kb 8 ****************************************************************/ 9 10 var 11 i,j,k,l,m,n:longint; 12 begin 13 readln(n); 14 case n mod 6 of 15 2,3:begin 16 k:=n div 2; 17 case (k mod 2)+(n mod 2)*2 of 18 0:begin 19 for i:=0 to (n-k) div 2 do writeln(k+i*2); 20 for i:=0 to (k-4) div 2 do writeln(2+i*2); 21 for i:=0 to (n-k-4) div 2 do writeln(k+3+i*2); 22 for i:=0 to k div 2 do writeln(1+2*i); 23 end; 24 2:begin 25 for i:=0 to (n-k-1) div 2 do writeln(k+i*2); 26 for i:=0 to (k-4) div 2 do writeln(2+i*2); 27 for i:=0 to (n-k-5) div 2 do writeln(k+3+i*2); 28 for i:=0 to k div 2 do writeln(1+2*i); 29 writeln(n); 30 end; 31 1:begin 32 for i:=0 to (n-k-1) div 2 do writeln(k+i*2); 33 for i:=0 to (k-3) div 2 do writeln(1+i*2); 34 for i:=0 to (n-k-3) div 2 do writeln(k+3+i*2); 35 for i:=0 to (k-1) div 2 do writeln(2+2*i); 36 end; 37 3:begin 38 for i:=0 to (n-k-2) div 2 do writeln(k+i*2); 39 for i:=0 to (k-3) div 2 do writeln(1+i*2); 40 for i:=0 to (n-k-4) div 2 do writeln(k+3+i*2); 41 for i:=0 to (k-1) div 2 do writeln(2+2*i); 42 writeln(n); 43 end; 44 end; 45 end; 46 else begin 47 if odd(n) then 48 begin 49 for i:=1 to (n-1) div 2 do writeln(i*2); 50 for i:=1 to (n+1) div 2 do writeln(i*2-1); 51 end 52 else 53 begin 54 for i:=1 to n div 2 do writeln(i*2); 55 for i:=1 to n div 2 do writeln(i*2-1); 56 end; 57 end; 58 end; 59 readln; 60 end.