1067: [SCOI2007]降雨量

1067: [SCOI2007]降雨量

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 2148  Solved: 554
[Submit][Status]

Description

我们常常会说这样的话:“X年是自Y年以来降雨量最多的”。它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小于X年。例如2002,2003,2004和2005年的降雨量分别为4920,5901,2832和3890,则可以说“2005年是自2003年以来最多的”,但不能说“2005年是自2002年以来最多的”由于有些年份的降雨量未知,有的说法是可能正确也可以不正确的。

Input

输入仅一行包含一个正整数n,为已知的数据。以下n行每行两个整数yi和ri,为年份和降雨量,按照年份从小到大排列,即yi<yi+1。下一行包含一个正整数m,为询问的次数。以下m行每行包含两个数Y和X,即询问“X年是自Y年以来降雨量最多的。”这句话是必真、必假还是“有可能”。

Output

对于每一个询问,输出true,false或者maybe。

Sample Input

6
2002 4920
2003 5901
2004 2832
2005 3890
2007 5609
2008 3024
5
2002 2005
2003 2005
2002 2007
2003 2007
2005 2008

Sample Output

false
true
false
maybe
false

HINT

 

100%的数据满足:1<=n<=50000, 1<=m<=10000, -10^9<=yi<=10^9, 1<=ri<=10^9

 

Source

POJ 2637 WorstWeather Ever

 

题解:逗比的我果然还是选了个要人命的题目额。。。TT。。。害得我纠结了2个小时。。。好了思路——其实核心部件就是个球区间最大值(可以选择RMQ或者线段树,但是还是建议RMQ,因为线段树O(logn)的复杂度伤不起啊,别忘了时限为1s),接下来就是各种坑爹的WA——原因很简单也很不简单——这道题虽然true的情况只有一种很明显,但是maybe有N多情况!!!要命啊!!!简直改到发疯。。。接下来引用hzwer神犇的话,我自己改来改去也讲不太清楚了,不过大概意思就是这样(hzwer的题解传送门):

需要考虑很多情况。比如第x年到第y年

如果y<x,不知道有没这种情况,应该是false吧

true的情况需要满足

x与y的值都已知且y值<x值且x+1到y-1都已知并且都小于y值

maybe满足

1.x值y值均未知

2.已知x值未知y值并且x+1到y-1都已知并且都小于y值

3.已知y值未知x值并且x+1到y-1都已知并且都小于x值

4.x为年份最大一年,y>x

5.y为年份最小一年,x<y

6.x,y均已知且y<x并且x+1到y-1有未知并且都小于x值

其它都是false

大概这样。。。

这种题一遍AC的是神

***调了几个小时

 1 var //HansBug的萌萌哒code
 2         c,b:array[0..100010]of longint;
 3         x,y:array[0..100010]of longint;
 4         f:array[0..100010,0..20]of longint;
 5         i,j,k,n,m,x0,y0:longint;
 6 function max(a,b:longint):longint;
 7         begin
 8                 if a>b then exit(a) else exit(b);
 9         end;
10 function cal(l,r:longint):longint;
11         var 
12                 j:longint;
13         begin
14                 if r<l then exit(-1);
15                 j:=trunc(ln(r-l+1)/ln(2));
16                 exit(max(f[l][j],f[r-(1 shl j)+1][j]));
17         end;
18 procedure built;
19         var 
20                 i,j:longint;
21         begin
22                 for j:=1 to trunc(ln(n)/ln(2)) do
23                         for i:=1 to n-1 shl j+1 do
24                                 f[i][j]:=max(f[i][j-1],f[i+1 shl (j-1)][j-1]);
25         end;
26 function find(x:longint):longint;
27         var 
28                 l,r,mid:longint;
29         begin
30                 l:=1;r:=n;
31                 while l<r do
32                         begin
33                         mid:=(l+r)shr 1;
34                         if c[mid]=x then exit(mid);
35                         if c[mid]<x then l:=mid+1 else r:=mid-1;
36                 end;
37                 exit(l);
38         end;
39 begin
40         read(n);
41         for i:=1 to n do
42                 read(c[i],b[i]);
43         for i:=1 to n do
44                 f[i][0]:=b[i];
45         built;
46         read(m);
47         for i:=1 to m do
48                 begin
49                         read(x0,y0);
50                         if x0>y0 then
51                                 begin
52                                         writeln('false');
53                                         continue;
54                                 end;
55                         j:=find(x0);
56                         k:=find(y0);
57                         if (c[j]=x0)and(c[k]=y0) then
58                                 if (y0-x0=k-j) then
59                                         if (b[j]>=b[k]) then
60                                                 if cal(j+1,k-1)<b[k] then
61                                                         begin
62                                                                 writeln('true');
63                                                                 continue;
64                                                         end;
65                         if (c[j]<>x0)and(c[k]<>y0)then
66                                 begin
67                                         writeln('maybe');
68                                         continue;
69                                 end;
70                         if (c[j]<>x0)or(c[k]<>y0) then
71                                 begin
72                                         while (c[j]>x0)and(j<>0) do dec(j);
73                                         while (c[k]<y0)and(k<=n) do inc(k);
74                                         if c[j]<>x0 then y0:=k else y0:=j;
75                                         x0:=cal(j+1,k-1); 
76                                         if x0<b[y0] then writeln('maybe') else writeln('false');
77                                         continue;
78                                 end;
79                         if (k-j<>y0-x0) then
80                                 if (b[j]>=b[k]) then
81                                         begin
82                                                 x0:=cal(j+1,k-1);
83                                                 if x0<b[k] then writeln('maybe') else writeln('false');
84                                                 continue;
85                                         end;
86                         writeln('false');
87                 end;
88 end.

 

posted @ 2014-12-27 23:47  HansBug  阅读(630)  评论(0编辑  收藏  举报