[namespace hdk] 向量 direct_vector
我忏悔我有罪我心情又不好了不知道干什么所以又不小心封了个东西啊啊啊啊啊啊啊啊
功能
已重载 [] 运算符(左值)
已重载 = 运算符(可使用向量或 std:::vector
已重载 + += - -= -(负号) *(点乘) *=(点乘) 运算符
已重载 == 运算符(已使用 template,operator<1>(&A) 时狭义比较(默认),否则仅比较长度)
已重载 < > <= >= (\(eps\) 意义下比较长度大小)运算符
已重载构造函数
已定义 const double pi (\(\pi\))
全局函数
anglealpha(double) 弧度制转角度值
arcalpha(double) 角度值转弧度制
以下均采用弧度制
double alpha() 返回该向量夹角
double get(int) 获取某一维的值
std::vector
double length() 返回向量长度
bool length_eq(&A) 比较长度是否相等(\(eps\) 意义下)
lower_degree(int) 降低向量维度后返回
upper_degree(int) 升高向量维度后返回
print(char devide=[space],char end=[\n]) 输出向量,使用 devide 做分隔符,end 做结束符
set_vector(std::vector
set_basevector(double alpha) 将该向量赋值为夹角为 alpha 的单位向量
set_basevector() 夹角不变,将该向量变成单位向量
vectoralpha(&A) 求向量夹角
vectoralpha_cos(&A) 求向量夹角的余弦
*_get(int) 返回指定维度的指针
已定义 xl 作为类名称
clear()
定义
direct_vector<3> b({1,1,1});
direct_vector<3> a;
xl<2> p();
代码
#include<bits/stdc++.h>
using namespace std;
namespace hdk{
#define xl direct_vector
const long double pi=acos(-1);
const long double eps=1e-5;
inline double arcalpha(double _anglealpha){
return _anglealpha*pi/180;
}
inline double anglealpha(double _arcalpha){
return _arcalpha*180/pi;
}
template<int degree>
class direct_vector{
private:
double d[degree+1];
public:
direct_vector<degree>(vector<double> x={}){
for(int i=1;i<=degree;++i){
if(i>(int)x.size()) d[i]=0;
else d[i]=x[i-1];
}
}
inline double *_get(int d_id){
return &d[d_id];
}
inline void clear(){
for(int i=1;i<=degree;++i){
d[i]=0;
}
}
template<bool alphatype=1>
inline void set_basevector(double alpha){
if(degree!=2) exit(3);
if(alphatype==2){
alpha=arcalpha(alpha);
}
d[1]=cos(alpha);
d[2]=sin(alpha);
}
inline double get(int d_id){return (abs(d[d_id])<=eps?0:d[d_id]);}
inline void set_vector(vector<double>a){
if(a.size()<degree) exit(3);
for(int i=1;i<=degree;++i){
d[i]=a[i-1];
}
}
void operator =(const vector<double> &A){
if(A.size()<degree) exit(3);
for(int i=1;i<=degree;++i){
d[i]=A[i-1];
}
}
void operator =(const direct_vector<degree> &A){
for(int i=1;i<=degree;++i){
d[i]=A.d[i];
}
}
direct_vector<degree> operator +(const direct_vector<degree> &A)const{
direct_vector<degree> ans;
for(int i=1;i<=degree;++i){
ans.d[i]=d[i]+A.d[i];
}
return ans;
}
void operator +=(const direct_vector<degree> &A){
*this=*this+A;
}
direct_vector<degree> operator -()const{
direct_vector<degree> ans;
for(int i=1;i<=degree;++i){
ans.d[i]=-d[i];
}
return ans;
}
direct_vector<degree> operator -(const direct_vector<degree> &A)const{
return *this+-A;
}
void operator -=(const direct_vector<degree> &A){
*this=*this+-A;
}
double operator *(const direct_vector<degree> &A)const{
double ans=0;
for(int i=1;i<=degree;++i){
ans+=d[i]*A.d[i];
}
return ans;
}
inline vector<double> get_all(){
vector<double> v;
for(int i=1;i<=degree;++i){
v.push_back(d[i]);
}
return v;
}
inline void print(char devide=' ',char end='\n'){
for(int i=1;i<=degree;++i){
cout<<(abs(d[i])<eps?0:d[i])<<devide;
}
cout<<end;
}
double& operator [](int x){
return d[x];
}
inline double length(){
double ans=0;
for(int i=1;i<=degree;++i){
ans+=d[i]*d[i];
}
return sqrt(ans);
}
inline void set_basevector(){
double len=length();
for(int i=1;i<=degree;++i){
d[i]/=len;
}
}
direct_vector<degree> operator *(double x)const{
direct_vector<degree> ans;
for(int i=1;i<=degree;++i){
ans.d[i]=x*d[i];
}
return ans;
}
void operator *=(double x){
*this=*this*x;
}
template<int equaltype=1>
bool operator ==(direct_vector<degree> A){
if(equaltype==1){
for(int i=1;i<=degree;++i){
if(abs(d[i]-A.d[i])>eps) return false;
}
return true;
}
else{
if(abs(length()-A.length())<=eps) return true;
return false;
}
}
bool operator !=(direct_vector<degree> A){
return not(*this==A);
}
bool operator <(direct_vector<degree> A){
return length()<A.length();
}
bool operator >(direct_vector<degree> A){
return not((*this.operator==<2>(A)) or (*this<A));
}
bool operator <=(direct_vector<degree> A){
return not(*this>A);
}
bool operator >=(direct_vector<degree> A){
return not(*this<A);
}
template<int todegree>
direct_vector<todegree> upper_degree(){
direct_vector<todegree> ans;
for(int i=1;i<=degree;++i){
*ans._get(i)=d[i];
}
return ans;
}
template<int todegree>
direct_vector<todegree> lower_degree(){
direct_vector<todegree> ans;
for(int i=1;i<=todegree;++i){
*ans._get(i)=d[i];
}
return ans;
}
double alpha(){
direct_vector<degree> res;
res=*this;
res.set_basevector();
return acos(res[1]);
}
double vectoralpha_cos(direct_vector<degree> A){
double ans=abs(*this*A)/(length()*A.length());
return ans;
}
double vectoralpha(direct_vector<degree> A){
double res=acos(vectoralpha_cos(A));
if(abs(res)<=eps){
return 0;
}
else{
return res;
}
}
bool length_eq(direct_vector<degree> A){
return *this.operator==<2>(A);
}
};
}
using namespace hdk;