[TK] Rudolf and Subway ( CodeForces #933 div.3 - G )
形式化题意
给定一个带权无向图,求从 \(s\) 点到 \(e\) 点的路径上途径边权种类的最小值.
思路
题图
我们把边权种类相同的点连成的子图抽象成一个 "平台" ,从题目给我们的图中可以看出来,\(1\) 到 \(6\) 的过程其实也是不断上平台与下平台的过程.
- 从 \(1\) 点上绿平台,走到 \(2\) 点下绿平台.
- 从 \(2\) 点上红平台,走到 \(6\) 点下红平台.
那么我们所求的种类数,不就是我们走过的不同平台数吗.
所以,我们现在需要维护这样一种规则:
- 在平台上走动不消耗费用
- 每上下平台记一次费用
其实十分容易实现. 一种是建分层图,一种是为每个平台建一个点,这里我们为了方便实现,说第二种.
现在我们为每个平台都建立起了一个点,那么为了使我们在平台上走动不消耗费用,我们需要将平台点与平台途径的每一个点都连接一条权值为 \(0\) 的无向边,为了使每上下平台记一次费用,我们可以只将所有上平台的边(即节点指向平台的边)的边权改为 \(1\),也可以只对下平台的边的值进行同样的操作.
这样,我们建立起的这个图就能跑最短路了,求出来的解即为答案.
优化
但是,这个题最恶心的地方是在它堆成山的 hack 数据(大概 90 多组),再加上这个题的多测,直接变成 TLE 测试机了. 所以,我们不得不对代码进行一些优化. 我的优化方案主要有以下几点:
1. 平台编号问题
假如我们直接使用 \(n+c\) ( \(c\)为平台编号 )作为平台点的 \(id\),会造成大量的空间浪费与清空消耗. 因此,我们采用有什么开什么的思想,建立一个 map,直接对输入值进行检测与分配编号,大概像下面这样:
map<int,int> mapping;
tot=n;
for(int i=1;i<=m;++i){
int x,y,z;
cin>>x>>y>>z;
if(!mapping.count){
mapping[z]=++tot;
}
e[x].push_back(edge{mapping[z],1});
e[y].push_back(edge{mapping[z],1});
e[mapping[z]].push_back(edge{x,0});
e[mapping[z]].push_back(edge{y,0});
}
但是这种办法在第三个测试点遗憾离场了: map 的查找复杂度太高,不得不把它改成一个 \(vis\) 和一个映射数组的组合,如下:
bool hv[400001];
int mapping[400001];
tot=n;
for(int i=1;i<=m;++i){
cin>>x>>y>>z;
if(!hv[z]){
hv[z]=true;
mapping[z]=++tot;
}
e[x].push_back(edge{mapping[z],1});
e[y].push_back(edge{mapping[z],1});
e[mapping[z]].push_back(edge{x,0});
e[mapping[z]].push_back(edge{y,0});
}
2. 初始化复杂度
请谨慎考虑你的代码的布局. 尽量不要出现初始化语句,任何的 memset,位运算赋值,clear() 都可能会导致你的代码慢上一千毫秒. 或者可以尽量减少初始化的范围,不要用 sizeof 浪费运行时间,用了哪里就只初始化哪里. 不然最好还是直接把 STL 的东西开成局部变量.
3. 判重
有 hack 数据重复了二十万次极限数据,请注意记录此次测试样例是否已经在之前的测试样例中被算出.
代码
未优化,仅用于参考,通过率很低
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m;
struct edge{
int to,w;
};
vector<edge> e[400001];
int dis[400001];
struct node{
int id,dis;
bool operator<(const node &A)const{
return dis>A.dis;
}
};
priority_queue<node> p;
bool vis[400001];
void dij(int s){
memset(dis,0x3f,sizeof(dis));
memset(vis,false,sizeof(vis));
dis[s]=0;
p.push(node{s,dis[s]});
while(!p.empty()){
node u=p.top();
p.pop();
if(vis[u.id]){
continue;
}
vis[u.id]=true;
for(edge i:e[u.id]){
if(dis[i.to]>dis[u.id]+i.w&&!vis[i.to]){
dis[i.to]=dis[u.id]+i.w;
p.push(node{i.to,dis[i.to]});
}
}
}
}
int tot=0;
bool hv[200001];
int mapping[200001];
signed main(){
ios::sync_with_stdio(false);
int cases;
cin>>cases;
while(cases--){
memset(hv,false,sizeof(hv));
memset(mapping,false,sizeof(mapping));
cin>>n>>m;
tot=n;int x,y,z;
for(int i=1;i<=m;++i){
cin>>x>>y>>z;
if(!hv[z]){
hv[z]=true;
mapping[z]=++tot;
}
e[x].push_back(edge{mapping[z],1});
e[y].push_back(edge{mapping[z],1});
e[mapping[z]].push_back(edge{x,0});
e[mapping[z]].push_back(edge{y,0});
}
int b,eu;
cin>>b>>eu;
dij(b);
cout<<dis[eu]<<endl;
for(int i=0;i<=tot;++i){
e[i].clear();
}
}
}
后记
好险,差点给我腰子噶断.