刷题-力扣-221. 最大正方形
221. 最大正方形
题目链接
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximal-square/
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题目描述
在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。
示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:
输入:matrix = [["0","1"],["1","0"]]
输出:1
示例 3:
输入:matrix = [["0"]]
输出:0
提示:
- m == matrix.length
- n == matrix[i].length
- 1 <= m, n <= 300
- matrix[i][j] 为 '0' 或 '1'
题目分析
- 根据题目描述计算二维矩阵内最大的‘1’组成的正方形的面积
- 假设f(x,y)表示以(x,y)结尾的正方形的维数,
当matrix[x][y]=0时,f(x,y)=0
当matrix[x][y]=1时,f(x,y)=min{f(x-1,y), f(x-1,y-1), f(x,y-1)}+1 - 边界条件
当x=0或y=0时,f(x,y)=matrix[x][y]
代码
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size();
int n = matrix[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
int maxSquare = 0;
for (int i = 0; i < m; ++i) {
if (matrix[i][0] == '1') dp[i][0] = 1;
maxSquare = max(dp[i][0], maxSquare);
}
for (int j = 0; j < n; ++j) {
if (matrix[0][j] == '1') dp[0][j] = 1;
maxSquare = max(dp[0][j], maxSquare);
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
if (matrix[i][j] == '1') {
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j]);
dp[i][j] = min(dp[i][j], dp[i][j - 1]) + 1;
maxSquare = max(dp[i][j], maxSquare);
}
}
}
return maxSquare * maxSquare;
}
};