acwing:https://www.acwing.com/problem/content/885/
高斯消元求解线性方程组
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 110;
const double eps = 1e-8;
LL n;
double a[N][N];
LL gauss(){
LL c, r;
for (c = 0, r = 0; c < n; c ++ ){
LL t = r;
for (int i = r; i < n; i ++ ) //找到绝对值最大的行
if (fabs(a[i][c]) > fabs(a[t][c]))
t = i;
if (fabs(a[t][c]) < eps) continue;
for (int j = c; j < n + 1; j ++ ) swap(a[t][j], a[r][j]); //将绝对值最大的一行换到最顶端
for (int j = n; j >= c; j -- ) a[r][j] /= a[r][c]; //将当前行首位变成 1
for (int i = r + 1; i < n; i ++ ) //将下面列消成 0
if (fabs(a[i][c]) > eps)
for (int j = n; j >= c; j -- )
a[i][j] -= a[r][j] * a[i][c];
r ++ ;
}
if (r < n){
for (int i = r; i < n; i ++ )
if (fabs(a[i][n]) > eps)
return 2;
return 1;
}
for (int i = n - 1; i >= 0; i -- )
for (int j = i + 1; j < n; j ++ )
a[i][n] -= a[i][j] * a[j][n];
return 0;
}
int main(){
cin >> n;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n + 1; j ++ )
cin >> a[i][j];
LL t = gauss();
if (t == 0){
for (int i = 0; i < n; i ++ ){
if (fabs(a[i][n]) < eps) a[i][n] = abs(a[i][n]);
printf("%.2lf\n", a[i][n]);
}
}
else if (t == 1) cout << "Infinite group solutions\n";
else cout << "No solution\n";
return 0;
}