UVa 1057 - Routing
先声明一下:这篇题解纯粹是对原题解的翻译与修复,并非原创。
解法是 DP + 最短路。这个思想并不是很少见,而这题强化了 DP 的思维难度。
设 f[i][j] 为 1~i,2~j 所经过的点数最少的路径的点数(考虑了重复点)。
给出转移方程:
f[i2][j] = min(f[i][j] + [i2 != j] | g[i][i2] = 1)
f[i][j2] = min(f[i][j] + [i != j2] | g[j2][j] = 1)
f[j][i] = min(f[j][i], f[i][j] + dis[i][j] - 1)
(f 是 DP 数组,dis 为两点最短路,g 是邻接矩阵)
初始化 f[1][1] = 1,那么答案就是 f[2][2]。
反着来是类似的。
#include <bits/stdc++.h> using namespace std; const int N = 100 + 5; const int INF = 0x3f3f3f3f; int dis[N][N]; int f[N][N]; bool inq[N][N]; vector<int> g1[N], g2[N]; int main() { int n, m, kase = 0; while (scanf("%d %d", &n, &m) == 2 && n) { for (int i = 1; i <= n; i++) { g1[i].clear(); g2[i].clear(); } memset(dis, INF, sizeof dis); for (int i = 1; i <= n; i++) { dis[i][i] = 0; } for (int i = 1; i <= m; i++) { int u, v; scanf("%d %d", &u, &v); dis[u][v] = 1; g1[u].push_back(v); g2[v].push_back(u); } for (int k = 1; k <= n; k++) { for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]); } } } printf("Network %d\n", ++kase); if (dis[1][2] != INF && dis[2][1] != INF) { memset(f, INF, sizeof f); f[1][1] = 1; queue<int> q1, q2; q1.push(1); q2.push(1); inq[1][1] = true; while (!q1.empty()) { int u1 = q1.front(), u2 = q2.front(); q1.pop(); q2.pop(); inq[u1][u2] = false; for (int i = 0; i < g1[u1].size(); i++) { int v1 = g1[u1][i]; int cand = f[u1][u2] + (v1 != u2); if (cand < f[v1][u2]) { f[v1][u2] = cand; if (!inq[v1][u2]) { q1.push(v1); q2.push(u2); inq[v1][u2] = true; } } } for (int i = 0; i < g2[u2].size(); i++) { int v2 = g2[u2][i]; int cand = f[u1][u2] + (v2 != u1); if (cand < f[u1][v2]) { f[u1][v2] = cand; if (!inq[u1][v2]) { q1.push(u1); q2.push(v2); inq[u1][v2] = true; } } } if (u1 != u2 && f[u1][u2] + dis[u1][u2] - 1 < f[u2][u1]) { f[u2][u1] = f[u1][u2] + dis[u1][u2] - 1; if (!inq[u2][u1]) { q1.push(u2); q2.push(u1); inq[u2][u1] = true; } } } printf("Minimum number of nodes = %d\n", f[2][2]); } else { printf("Impossible\n"); } printf("\n"); } return 0; }