NOIP模拟71

T1:

  结论题,口胡证明,考虑首先每两个点之间最多存在一条边(重边视作一条边)

而对于c > 1,显然对于同一对点,出边数大于入边,考虑构造一种情况使得某点负贡献大于1

也就是说,连向该点的边必须为某种颜色,否则入点的平衡会被打破,那么考虑是否存在一种调整方式

使得连向该点的边再颜色改变的情况下保持平衡,那么考虑从某点开始,沿连边将颜色一次递推(调色)

由于出边数大于入边数,那么最终在端点处一定可以通过颜色调换来完成整个递推过程。

代码如下:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define I int
 4 #define C char
 5 #define B bool
 6 #define V void
 7 #define D double
 8 #define LL long long
 9 #define UI unsigned int
10 #define UL unsigned long long
11 #define P pair<I,I>
12 #define MP make_pair
13 #define a first
14 #define b second
15 #define lowbit(x) (x & -x)
16 #define debug cout << "It's Ok Here !" << endl;
17 #define FP(x) freopen (#x,"r",stdin)
18 #define FC(x) freopen (#x,"w",stdout)
19 const I N = 1e6 + 3;
20 I n,m,k,c,ans,In[N];
21 inline I read () {
22     I x(0),y(1); C z(getchar());
23     while (!isdigit(z)) { if (z == '-') y = -1; z = getchar(); }
24     while ( isdigit(z))  x = x * 10 + (z ^ 48), z = getchar();
25     return x * y;
26 }
27 inline V Max (I &a,I b) { a = a > b ? a : b; }
28 inline V Min (I &a,I b) { a = a < b ? a : b; }
29 inline I max (I a,I b) { return a > b ? a : b; }
30 inline I min (I a,I b) { return a < b ? a : b; }
31 inline V swap (I &a,I &b) { a ^= b, b ^= a, a ^= b; }
32 inline I abs (I a) { return a >= 0 ? a : -a; }
33 inline P operator + (const P &a,const P &b) {
34     return MP (a.a + b.a,a.b + b.b);
35 }
36 inline P operator - (const P &a,const P &b) {
37     return MP (a.a - b.a,a.b - b.b);
38 }
39 signed main () {
40     FP (qiandao.in), FC (qiandao.out);
41     n = read (), m = read (), k = read (), c = read ();
42     for (I i(1);i <= k; ++ i) {
43         I x (read ()), y (read ());
44         In[x] ++ , In[y + n] ++ ;
45     }
46     for (I i(1);i <= n + m; ++ i) 
47         ans += In[i] % c != 0;
48     printf ("%d\n",ans);
49 }
View Code

T2:

  树剖板子题,但是容易被菊花图卡,正解为通过倍增寻找子节点,注意卡常

代码如下:

  1 #include <bits/stdc++.h>
  2 using namespace std;
  3 #define I int
  4 #define C char
  5 #define B bool
  6 #define V void
  7 #define D double
  8 #define LL long long
  9 #define UI unsigned int
 10 #define UL unsigned long long
 11 #define P pair<I,I>
 12 #define MP make_pair
 13 #define a first
 14 #define b second
 15 #define lowbit(x) (x & -x)
 16 #define debug cout << "It's Ok Here !" << endl;
 17 #define FP(x) freopen (#x,"r",stdin)
 18 #define FC(x) freopen (#x,"w",stdout)
 19 const I N = 3e5 + 3;
 20 I n,m;
 21 I tot,head[N],to[N << 1],nxt[N << 1];
 22 I cnt,dfn[N],size[N],f[N],t[N],s[N];
 23 inline I read () {
 24     I x(0),y(1); C z(getchar());
 25     while (!isdigit(z)) { if (z == '-') y = -1; z = getchar(); }
 26     while ( isdigit(z))  x = x * 10 + (z ^ 48), z = getchar();
 27     return x * y;
 28 }
 29 inline V Max (I &a,I b) { a = a > b ? a : b; }
 30 inline V Min (I &a,I b) { a = a < b ? a : b; }
 31 inline I max (I a,I b) { return a > b ? a : b; }
 32 inline I min (I a,I b) { return a < b ? a : b; }
 33 inline V swap (I &a,I &b) { a ^= b, b ^= a, a ^= b; }
 34 inline I abs (I a) { return a >= 0 ? a : -a; }
 35 inline P operator + (const P &a,const P &b) {
 36     return MP (a.a + b.a,a.b + b.b);
 37 }
 38 inline P operator - (const P &a,const P &b) {
 39     return MP (a.a - b.a,a.b - b.b);
 40 }
 41 inline V found (I y,I x) {
 42     to[++tot] = y, nxt[tot] = head[x], head[x] = tot;
 43     to[++tot] = x, nxt[tot] = head[y], head[y] = tot;
 44 }
 45 V Dfs1 (I x,I father) {
 46     f[x] = father, size[x] = 1;
 47     for (I i(head[x]),y(to[i]); i ;i = nxt[i],y = to[i]) if (y != father) {
 48         Dfs1 (y,x), size[x] += size[y];
 49         if (size[y] > size[s[x]]) s[x] = y;
 50     }
 51 }
 52 V Dfs2 (I x,I top) {
 53     dfn[x] = ++cnt, t[x] = top;
 54     if (!s[x]) return ; Dfs2 (s[x],top);
 55     for (I i(head[x]),y(to[i]); i ;i = nxt[i],y = to[i]) if (y != f[x] && y != s[x])
 56         Dfs2 (y,y);
 57 }
 58 I LCA (I x,I y) {
 59     while (t[x] != t[y]) dfn[x] < dfn[y] ? y = f[t[y]] : x = f[t[x]];
 60     return dfn[x] < dfn[y] ? x : y;
 61 }
 62 struct SGT {
 63     #define lid id << 1
 64     #define rid id << 1 | 1
 65     #define mid (l + r >> 1)
 66     #define update(id) (MA[id] = max (MA[lid],MA[rid]))
 67     I MA[N << 2],lazy[N << 2];
 68     inline V pushdown (I id) {
 69         MA[lid] += lazy[id], lazy[lid] += lazy[id];
 70         MA[rid] += lazy[id], lazy[rid] += lazy[id];
 71         lazy[id] = 0;
 72     }
 73     V secmod (I id,I l,I r,I ql,I qr,B typ) {
 74         if (ql <= l && r <= qr) 
 75             return (V) (typ ? (MA[id] ++ , lazy[id] ++ ) : (MA[id] -- , lazy[id] -- ));
 76         if (lazy[id] && l != r) pushdown (id);
 77         if (ql <= mid) secmod (lid,l,mid,ql,qr,typ);
 78         if (qr >  mid) secmod (rid,mid + 1,r,ql,qr,typ);
 79         update (id);
 80     }
 81 }SGT;
 82 signed main () {
 83     FP (magic.in), FC (magic.out);
 84     n = read (), m = read ();
 85     for (I i(1);i <  n; ++ i)
 86         found (read (), read ());
 87     Dfs1 (1,0), Dfs2 (1,1);
 88     while (m -- ) {
 89         I x (read ()), y (read ());
 90         if (dfn[x] > dfn[y]) swap (x,y);
 91         if (x == y) SGT.secmod (1,1,n,1,n,1);
 92         else {
 93             I lca (LCA (x,y));
 94             if (lca == x) {
 95                 SGT.secmod (1,1,n,1,n,1);
 96                 for (I i(head[x]),z(to[i]); i ;i = nxt[i],z = to[i]) 
 97                     if (z != f[x] && dfn[y] >= dfn[z] && dfn[y] <= dfn[z] + size[z] - 1)
 98                         SGT.secmod (1,1,n,dfn[z],dfn[z] + size[z] - 1,0);
 99                 SGT.secmod (1,1,n,dfn[y],dfn[y] + size[y] - 1,1);
100             }
101             else {
102                 SGT.secmod (1,1,n,dfn[x],dfn[x] + size[x] - 1,1);
103                 SGT.secmod (1,1,n,dfn[y],dfn[y] + size[y] - 1,1);
104             }
105         }
106         printf ("%d\n",SGT.MA[1]);
107     }
108 }
View Code

T3:

  考虑转化题意,由于不走回头路且只走最短路,那么老鼠的路径实际上是一棵树

于是通过最短路建立前驱,求最短路生成树即可,剩下的问题即为树形背包

代码如下:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define I long long
 4 #define C char
 5 #define B bool
 6 #define V void
 7 #define D double
 8 #define LL long long
 9 #define UI unsigned int
10 #define UL unsigned long long
11 #define P pair<I,I>
12 #define MP make_pair
13 #define a first
14 #define b second
15 #define lowbit(x) (x & -x)
16 #define debug cout << "It's Ok Here !" << endl;
17 #define FP(x) freopen (#x,"r",stdin)
18 #define FC(x) freopen (#x,"w",stdout)
19 const I N = 305, M = 3e4 + 3;
20 I n,m,t,pre[N],d[N];
21 I tot,head[N],to[M << 1],nxt[M << 1],wgt[M << 1];
22 vector <I> go[N];
23 D p[N][N],f[N][N];
24 inline I read () {
25     I x(0),y(1); C z(getchar());
26     while (!isdigit(z)) { if (z == '-') y = -1; z = getchar(); }
27     while ( isdigit(z))  x = x * 10 + (z ^ 48), z = getchar();
28     return x * y;
29 }
30 inline V Max (D &a,D b) { a = a > b ? a : b; }
31 inline V Min (D &a,D b) { a = a < b ? a : b; }
32 inline I max (I a,I b) { return a > b ? a : b; }
33 inline I min (I a,I b) { return a < b ? a : b; }
34 inline V swap (I &a,I &b) { a ^= b, b ^= a, a ^= b; }
35 inline I abs (I a) { return a >= 0 ? a : -a; }
36 inline P operator + (const P &a,const P &b) {
37     return MP (a.a + b.a,a.b + b.b);
38 }
39 inline P operator - (const P &a,const P &b) {
40     return MP (a.a - b.a,a.b - b.b);
41 }
42 inline V found (I z,I y,I x) {
43     to[++tot] = y, wgt[tot] = z, nxt[tot] = head[x], head[x] = tot;
44     to[++tot] = x, wgt[tot] = z, nxt[tot] = head[y], head[y] = tot;
45 }
46 inline V Dijkstra () {
47     priority_queue <P> q;
48     memset (d,0x3f,sizeof d);
49     B vis[N]; memset (vis,0,sizeof vis);
50     q.push (MP (0,1)); d[1] = 0;
51     while (!q.empty ()) {
52         I x (q.top ().b); q.pop ();
53         if (vis[x]) continue; vis[x] = 1;
54         for (I i(head[x]),y(to[i]),z(wgt[i]); i ;i = nxt[i],y = to[i],z = wgt[i]) 
55             if (d[x] + z < d[y]) d[y] = d[x] + z, pre[y] = x, q.push (MP (-d[y],y));
56     }
57     for (I i(2);i <= n; ++ i) go[pre[i]].push_back (i);
58 }
59 V Dfs (I x,I father) {
60     I num (0); 
61     for (auto y : go[x]) if (y != father) {
62         Dfs (y,x), num ++ ;
63         for (I j(t); ~j ; -- j) {
64             f[x][j] = f[x][j] * (num - 1) / num;
65             for (I k(j); ~k ; -- k)
66                 Max (f[x][j],f[x][k] * (num - 1) / num + f[y][j - k] / num); 
67         }
68     }
69     for (I j(t); ~j ; -- j)
70         for (I k(j); ~k ; -- k)
71             Max (f[x][j],p[x][k] + (1 - p[x][k]) * f[x][j - k]);
72 }
73 signed main () {
74     FP (arrest.in), FC (arrest.out);
75     n = read (), m = read (), t = read ();
76     for (I i(1);i <= m; ++ i) 
77         found (read (), read (), read ());
78     for (I i(1);i <= n; ++ i)
79         for (I j(1);j <= t; ++ j)
80             scanf ("%lf",&p[i][j]);
81     Dijkstra (); Dfs (1,0);
82     printf ("%.6lf\n",f[1][t]);
83 }
View Code

T4:

  注意问题的分析方式,由于m,k很小,分类讨论,问题仅限于整除关系,取代表元判断性质即可

posted @ 2021-10-07 20:00  HZOI_LYM  阅读(51)  评论(3编辑  收藏  举报