NOIP模拟52
Point:暴力卡常非常重要,考虑理论复杂度与实际复杂度
T1:
显然考虑每一位的贡献即可,打表发现为n >> i,累计即可
代码如下:
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define I int 4 #define LL long long 5 LL n,ans; 6 signed main () { 7 scanf ("%lld",&n); 8 for (I i(0),k(log2(n));i <= k; ++ i) 9 ans += n >> i; 10 printf ("%lld\n",ans); 11 }
T2:
考虑最优策略,由于双方都足够聪明,那么考虑对于当前决策的若干种收益中
(假设收益分别为a1,a2,...,an),那么对手一定会选择使你收益最小的一种决策
(另外比较显然的是投入数越多显然收益越多),由于资金总数相同,那么对于总资金
所造成的收益只有比例之分,而又由于对手总选择是你收益最小的决策,那么当且仅当
你的资金分配使得所有收益相同时才会获得最大收益(否则会获得min(a1,a2...an))
此时由于存在球数参数,我们将收益设为与球数相关函数发现,当且仅当资金分配与球数
成比例时,每种球的收益相同,因此最优决策即为按比例分配
Little Case:由于每次选择最优策略,那么对手每次掉球其实是任意的
代码如下:
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define I int 4 #define C char 5 const I N = 1e6 + 3; 6 const I mod = 998244353; 7 I n,ans,a[N],sigma,sum,buc[N],Y[N],p; 8 inline I read() { 9 I x(0),y(1); C z(getchar()); 10 while (!isdigit(z)) { if (z == '-') y = -1; z = getchar(); } 11 while ( isdigit(z)) x = x * 10 + (z ^ 48), z = getchar(); 12 return x * y; 13 } 14 signed main () { 15 n = read(); ans = 1; 16 for (I i(1);i <= n; ++ i) 17 a[i] = read(), sigma += a[i], p = max (p,a[i]), buc[a[i]] ++ ; 18 Y[1] = 1; for (I i(2);i <= sigma; ++ i) Y[i] = 1ll * (mod - mod / i) * Y[mod % i] % mod; 19 sum = sigma; 20 for (I i(1);i <= sigma; ++ i) { 21 ans = 1ll * n * ans % mod * p % mod * Y[sum] % mod; 22 sum -- , buc[p - 1] ++ ; if (-- buc[p] == 0) p -- ; 23 } 24 printf ("%d\n",ans); 25 }
当权值范围不大时,可以采用桶+指针维护最大值降低时间复杂度
T3:
暴力做法(正解知识点不会):
首先发现权值范围并不大,那么对于a^k,可以进行预处理得到,那么只需要知道路径长度即可
完全暴力不说,考虑优化,发现sigma意义下,对于相同长度的路径进行了多次遍历,那么考虑
将问题中心由路径转换到长度,考虑统计每种长度的路径有多少条统一计算
比较显然的点分治,通过Dfs遍历出深度的种类与数量组合即可(时间复杂度O(n^2logn))
可过70pts,考虑事实上在组合过程中可以采用NTT优化,时间复杂度O(nlog^2n),然而仍然70pts
点分治代码如下:
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define I int 4 #define C char 5 #define B bool 6 #define V void 7 #define LLL __int128 8 const I N = 1e6 + 3; 9 const I mod = 998244353; 10 I n,t,MA,p[N],num[N]; 11 I root,S,size[N],dp[N]; 12 I tot,head[N],to[N << 1],nxt[N << 1]; 13 LLL ans,pro[N]; 14 B jud[N]; 15 inline I read() { 16 I x(0),y(1); C z(getchar()); 17 while (!isdigit(z)) { if (z == '-') y = -1; z = getchar(); } 18 while ( isdigit(z)) x = x * 10 + (z ^ 48), z = getchar(); 19 return x * y; 20 } 21 inline V print (I x){ 22 C ch[12]; I len(0); 23 if(x < 0){ putchar('-'); x = ~x + 1; } 24 do { ch[len++]=x % 10+ (1 << 4) + (1 << 5); x /= 10; } while(x); 25 for(I i(len - 1); ~i ; -- i) putchar (ch[i]); 26 } 27 inline V found (I x,I y) { 28 to[++tot] = y, nxt[tot] = head[x], head[x] = tot; 29 to[++tot] = x, nxt[tot] = head[y], head[y] = tot; 30 } 31 inline I fp (I a) { I ans(1); 32 for (I b(t); b ;b >>= 1, a = 1ll * a * a % mod) 33 if (b & 1) ans = 1ll * ans * a % mod; 34 return ans; 35 } 36 V Find (I x,I father) { 37 dp[x] = 0, size[x] = 1; 38 for (I i(head[x]),y(to[i]); i ;i = nxt[i],y = to[i]) if (!jud[y] && y != father) 39 Find (y,x), size[x] += size[y], dp[x] = max (dp[x],size[y]); 40 dp[x] = max (dp[x],S - size[x]); 41 if (dp[x] < dp[root]) root = x; 42 } 43 V Dfs (I x,I father,I deep) { 44 for (I i(head[x]),y(to[i]); i ;i = nxt[i],y = to[i]) if (!jud[y] && y != father) 45 num[deep + 1] ++ , MA = max (MA,deep + 1), Dfs (y,x,deep + 1); 46 } 47 V Figure (I x) { 48 MA = 0, Dfs (x,0,0); 49 for (I i(1);i <= MA; ++ i) { 50 pro[i + i] += 1ll * num[i] * (num[i] - 1) >> 1; 51 for (I j(i + 1);j <= MA; ++ j) 52 pro[i + j] += 1ll * num[i] * num[j]; 53 pro[i] += num[i], num[i] = 0; 54 } 55 for (I i(head[x]),y(to[i]); i ;i = nxt[i],y = to[i]) if (!jud[y]) { 56 MA = 0, Dfs (y,x,0); 57 for (I j(1);j <= MA; ++ j) { 58 pro[j + j + 2] -= 1ll * num[j] * (num[j] - 1) >> 1; 59 for (I k(j + 1);k <= MA; ++ k) 60 pro[j + k + 2] -= 1ll * num[j] * num[k]; 61 pro[j + 2] -= num[j], num[j] = 0; 62 } 63 } 64 } 65 V Divide (I x) { 66 jud[x] = 1, Figure (x); 67 for (I i(head[x]),y(to[i]); i ;i = nxt[i],y = to[i]) if (!jud[y]) 68 root = 0, S = size[y], Find (y,x), Divide (root); 69 } 70 signed main () { 71 n = read(), t = read(); dp[root] = S = n; 72 for (I i(0);i < n - 1; ++ i) found (read(),read()); 73 for (I i(1);i <= n; ++ i) p[i] = fp (i); 74 Find (1,0), Divide (root); 75 for (I i(1);i <= n; ++ i) (ans += pro[i] * p[i] % mod) %= mod; 76 print (ans); 77 }
考场注意理论复杂度与实际复杂度,想到要去打
T4:
暴力做法(Geek):
发现问题与层数相关,于是对每一层分组,可以通过vector记录每一层所有点的dfn
在查询时,根据给出的x,y逐层跳跃遍历,在每一层通过lower_bound确定子树中的点
我的做法是采用树状数组差分求解(区间修改单点查询)
代码如下:
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define I int 4 #define C char 5 #define V void 6 #define lowbit(x) (x & -x) 7 const I N = 3e5 + 3; 8 I n,q,root,a,b,c,l,r,MA,d[N],size[N],ld[N],rd[N]; 9 I tot,head[N],to[N << 1],nxt[N << 1],cnt1,aux[N]; 10 I* BIT[N]; 11 vector <I> vec[N]; 12 inline I read() { 13 I x(0),y(1); C z(getchar()); 14 while (!isdigit(z)) { if (z == '-') y = -1; z = getchar(); } 15 while ( isdigit(z)) x = x * 10 + (z ^ 48), z = getchar(); 16 return x * y; 17 } 18 inline V found (I x,I y) { 19 to[++tot] = y, nxt[tot] = head[x], head[x] = tot; 20 to[++tot] = x, nxt[tot] = head[y], head[y] = tot; 21 } 22 V Dfs (I x,I father) { 23 ld[x] = ++cnt1, aux[cnt1] = x, size[x] = 1, MA = max (MA,d[x]); 24 for (I i(head[x]),y(to[i]); i ;i = nxt[i],y = to[i]) if (y != father) 25 d[y] = d[x] + 1, Dfs (y,x), size[x] += size[y]; 26 rd[x] = ld[x] + size[x] - 1; 27 } 28 inline V secadd (I idx,I x,I y,I z) { y ++ ; 29 for (;x <= BIT[idx][0];x += lowbit(x)) BIT[idx][x] += z; 30 for (;y <= BIT[idx][0];y += lowbit(y)) BIT[idx][y] -= z; 31 } 32 inline I poique (I idx,I x) { I ans(0); 33 for (; x ;x -= lowbit(x)) ans += BIT[idx][x]; 34 return ans; 35 } 36 signed main () { 37 n = read(), q = read(); 38 for (I i(0);i < n - 1; ++ i) found (read(),read()); d[1] = 1, Dfs (1,0); 39 for (I i(1);i <= cnt1; ++ i) vec[d[aux[i]]].push_back (i); 40 for (I i(1);i <= MA; ++ i) { BIT[i] = new I [vec[i].size () + 1]; 41 memset(BIT[i],0,sizeof 4 * (vec[i].size () + 1)); BIT[i][0] = vec[i].size (); 42 } 43 while (q -- ) { 44 if (read() & 1) { 45 root = read(), a = read(), b = read(), c = read(); I deep(d[root] + b); 46 while (deep <= MA) { 47 l = lower_bound (vec[deep].begin (),vec[deep].end (),ld[root]) - vec[deep].begin (); 48 if (l == vec[deep].size ()) { deep += a; continue; } 49 r = upper_bound (vec[deep].begin (),vec[deep].end (),rd[root]) - vec[deep].begin (); 50 secadd (deep,l + 1,r,c); deep += a; 51 } 52 } else { root = read(); 53 l = lower_bound (vec[d[root]].begin (),vec[d[root]].end (),ld[root]) - vec[d[root]].begin (); 54 printf ("%d\n",poique (d[root],l + 1)); 55 } 56 } 57 }
分析题目性质,优化暴力,指针动态开空间,数组注意清零,灵活运用STL