poj 1722 SUBTRACT

SUBTRACT
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2677   Accepted: 1182   Special Judge

Description

We are given a sequence of N positive integers a = [a1, a2, ..., aN] on which we can perform contraction operations.
One contraction operation consists of replacing adjacent elements ai and ai+1 by their difference ai-ai+1. For a sequence of N integers, we can perform exactly N-1 different contraction operations, each of which results in a new (N-1) element sequence.

Precisely, let con(a,i) denote the (N-1) element sequence obtained from [a1, a2, ..., aN] by replacing the elements ai and ai+1 by a single integer ai-ai+1 :

con(a,i) = [a1, ..., ai-1, ai-ai+1, ai+2, ..., aN]
Applying N-1 contractions to any given sequence of N integers obviously yields a single integer.
For example, applying contractions 2, 3, 2 and 1 in that order to the sequence [12,10,4,3,5] yields 4, since :
con([12,10,4,3,5],2) = [12,6,3,5]

con([12,6,3,5] ,3) = [12,6,-2]
con([12,6,-2] ,2) = [12,8]
con([12,8] ,1) = [4]

Given a sequence a1, a2, ..., aN and a target number T, the problem is to find a sequence of N-1 contractions that applied to the original sequence yields T.

Input

The first line of the input contains two integers separated by blank character : the integer N, 1 <= N <= 100, the number of integers in the original sequence, and the target integer T, -10000 <= T <= 10000.
The following N lines contain the starting sequence : for each i, 1 <= i <= N, the (i+1)st line of the input file contains integer ai, 1 <= ai <= 100.

Output

Output should contain N-1 lines, describing a sequence of contractions that transforms the original sequence into a single element sequence containing only number T. The ith line of the output file should contain a single integer denoting the ith contraction to be applied.
You can assume that at least one such sequence of contractions will exist for a given input.

Sample Input

5 4
12
10
4
3
5

Sample Output

2
3
2
1

Source

 
难是真的不难,一开始看到了这种操作,感觉后效性处理只能够用区间dp
然后我考虑了一下合并顺序的影响,突然发现只是+和-的区别,那就是一个非常明显的线性dp了
但是我不知道为什么感觉做不了,看了一下,结果不会设计状态
现在想想其实就很明显,很经典。。
感觉我的dp的方法不是那么明显
主要还是看经验,这个状态设计和背包是一类的
现在想想我会的状态设计也就那几种
一个是背包一类的,一个是区间dp一类,一个是LCS还有f[i]表示第i个选上
一个是树形dp的,一个是用一个维度来表示当前这个数字选不选,一个是环形的2倍范围
一个是传纸条的那种,也就是现在到了哪里,但是比较长
按我现在学到了状压dp来算的话应该就这些,
 
代码
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <math.h>
#include <map>
#include <string.h>
#define ll long long
using namespace std;
inline int read() {
    char c=getchar();int a=0,b=1;
    for(;c<'0'||c>'9';c=getchar())if(c=='-')b=-1;
    for(;c>='0'&&c<='9';c=getchar())a=a*10+c-48;return a*b;
}
int n,a[101],f[101][30001],T;
int main()
{
//    freopen(".in","r",stdin);
//    freopen(".out","w",stdout);
    n=read();T=read();
    for(int i=1;i<=n;i++)
    {
        a[i]=read();
    }
    f[1][a[1]+10000]=1;
    f[2][a[1]-a[2]+10000]=-1;
    for(int i=3;i<=n;i++)
    {
        for(int j=0;j<=20000;j++)
        {
            if(f[i-1][j]!=0)
            {
                f[i][j+a[i]]=1;
                f[i][j-a[i]]=-1;
            }
        }
    }
    int ans[1001]={};int now=T+10000,cnt=0;    
    for(int i=n;i>=2;i--)
    {
        ans[i]=f[i][now];
        if(ans[i]==-1)now+=a[i];
        else if(ans[i]==1)now-=a[i];
    }
    for(int i=2;i<=n;i++)
    {
        if(ans[i]==1)
        {
            cout<<i-cnt-1<<endl;
            cnt++;
        }
    }
    for(int i=2;i<=n;i++)
    {
        if(ans[i]==-1)cout<<1<<endl;
    }
    return 0;
}

 

posted @ 2023-10-26 17:41  HL_ZZP  阅读(4)  评论(0编辑  收藏  举报