基于卷积神经网络的面部表情识别(Pytorch实现)----台大李宏毅机器学习作业3(HW3)

一、项目说明

  给定数据集train.csv,要求使用卷积神经网络CNN,根据每个样本的面部图片判断出其表情。在本项目中,表情共分7类,分别为:(0)生气,(1)厌恶,(2)恐惧,(3)高兴,(4)难过,(5)惊讶和(6)中立(即面无表情,无法归为前六类)。所以,本项目实质上是一个7分类问题。

数据集介绍:

  (1)、CSV文件,大小为28710行X2305列;

  (2)、在28710行中,其中第一行为描述信息,即“label”和“feature”两个单词,其余每行内含有一个样本信息,即共有28709个样本;

  (3)、在2305列中,其中第一列为该样本对应的label,取值范围为0到6。其余2304列为包含着每个样本大小为48X48人脸图片的像素值(2304=48X48),每个像素值取值范围在0到255之间;

  (4)、数据集地址:https://pan.baidu.com/s/1hwrq5Abx8NOUse3oew3BXg ,提取码:ukf7 。

 二、思路分析及代码实现

  给定的数据集是csv格式的,考虑到图片分类问题的常规做法,决定先将其全部可视化,还原为图片文件再送进模型进行处理。

  借助深度学习框架Pytorch1.0 CPU(穷逼)版本,搭建模型,由于需用到自己的数据集,因此我们需要重写其中的数据加载部分,其余用现成的API即可。

  作业要求使用CNN实现功能,因此基本只能在调参阶段自由发挥(不要鄙视调参,通过这次作业才发现,参数也不是人人都能调得好的,比如我)。

2.1 数据可视化

  我们需要将csv中的像素数据还原为图片并保存下来,在python环境下,很多库都能实现类似的功能,如pillow,opencv等。由于笔者对opencv较为熟悉,且opencv又是专业的图像处理库,因此决定采用opencv实现这一功能。

2.1.1 数据分离

  原文件中,label和人脸像素数据是集中在一起的。为了方便操作,决定利用pandas库进行数据分离,即将所有label 读出后,写入新创建的文件label.csv;将所有的像素数据读出后,写入新创建的文件data.csv。

 1 # 将label和像素数据分离
 2 import pandas as pd
 3 
 4 # 修改为train.csv在本地的相对或绝对地址
 5 path = './/ml2019spring-hw3//train.csv'
 6 # 读取数据
 7 df = pd.read_csv(path)
 8 # 提取label数据
 9 df_y = df[['label']]
10 # 提取feature(即像素)数据
11 df_x = df[['feature']]
12 # 将label写入label.csv
13 df_y.to_csv('label.csv', index=False, header=False)
14 # 将feature数据写入data.csv
15 df_x.to_csv('data.csv', index=False, header=False)

  以上代码执行完毕后,在该代码脚本所在的文件夹下,就会生成两个新文件label.csv以及data.csv。在执行代码前,注意修改train.csv在本地的路径。

2.1.2 数据可视化

  将数据分离后,人脸像素数据全部存储在data.csv文件中,其中每行数据就是一张人脸。按行读取数据,利用opencv将每行的2304个数据恢复为一张48X48的人脸图片,并保存为jpg格式。在保存这些图片时,将第一行数据恢复出的人脸命名为0.jpg,第二行的人脸命名为1.jpg......,以方便与label[0]、label[1]......一一对应。

 1 import cv2
 2 import numpy as np
 3 
 4 # 指定存放图片的路径
 5 path = './/face'
 6 # 读取像素数据
 7 data = np.loadtxt('data.csv')
 8 
 9 # 按行取数据
10 for i in range(data.shape[0]):
11     face_array = data[i, :].reshape((48, 48)) # reshape
12     cv2.imwrite(path + '//' + '{}.jpg'.format(i), face_array) # 写图片

  以上代码虽短,但涉及到大量数据的读取和大批图片的写入,因此占用的内存资源较多,且执行时间较长(视机器性能而定,一般要几分钟到十几分钟不等)。代码执行完毕,我们来到指定的图片存储路径,就能发现里面全部是写好的人脸图片。

  粗略浏览一下这些人脸图片,就能发现这些图片数据来源较广,且并不纯净。就前60张图片而言,其中就包含了正面人脸,如1.jpg;侧面人脸,如18.jpg;倾斜人脸,如16.jpg;正面人头,如7.jpg;正面人上半身,如55.jpg;动漫人脸,如38.jpg;以及毫不相关的噪声,如59.jpg。放大图片后仔细观察,还会发现不少图片上还有水印。种种因素均给识别提出了严峻的挑战。

2.2 在pytorch下创建数据集

  现在我们有了图片,但怎么才能把图片读取出来送给模型呢?

  最简单粗暴的方法就是直接用opencv将所有图片读取出来,以numpy中array的数据格式直接送给模型。如果这样做的话,会一次性把所有图片全部读入内存,占用大量的内存空间,且只能使用单线程,效率不高,也不方便后续操作。

  其实在pytorch中,有一个类(torch.utils.data.Dataset)是专门用来加载数据的,我们可以通过继承这个类来定制自己的数据集和加载方法。以下为基本流程。

2.2.1 创建data-label对照表

  首先,我们需要划分一下训练集和验证集。在本次作业中,共有28709张图片,取前24000张图片作为训练集,其他图片作为验证集。新建文件夹train和val,将0.jpg到23999.jpg放进文件夹train,将其他图片放进文件夹val。

  在继承torch.utils.data.Dataset类定制自己的数据集时,由于在数据加载过程中需要同时加载出一个样本的数据及其对应的label,因此最好能建立一个data-label对照表,其中记录着data和label的对应关系(“data-lable对照表”并非官方名词,这个技术流程是笔者参考了他人的博客后自己摸索的,这个名字也是笔者给命的名)。

  有童鞋看到这里就会提出疑问了:在人脸可视化过程中,每张图片的命名不都和label的存放顺序是一一对应关系吗,为什么还要多此一举,再重新建立data-label对照表呢?笔者在刚开始的时候也是这么想的,按顺序(0.jpg, 1.jpg, 2.jpg......)加载图片和label(label[0], label[1], label[2]......),岂不是方便、快捷又高效?结果在实际操作的过程中才发现,程序加载文件的机制是按照文件名首字母(或数字)来的,即加载次序是0,1,10,100......,而不是预想中的0,1,2,3......,因此加载出来的图片不能够和label[0],label[1],lable[2],label[3]......一一对应,所以建立data-label对照表还是相当有必要的。

  建立data-label对照表的基本思路就是:指定文件夹(train或val),遍历该文件夹下的所有文件,如果该文件是.jpg格式的图片,就将其图片名写入一个列表,同时通过图片名索引出其label,将其label写入另一个列表。最后利用pandas库将这两个列表写入同一个csv文件。 

  执行这段代码前,注意修改相关文件路径。代码执行完毕后,会在train和val文件夹下各生成一个名为dataset.csv的data-label对照表。 

 1 import os
 2 import pandas as pd
 3 
 4 def data_label(path):
 5     # 读取label文件
 6     df_label = pd.read_csv('label.csv', header = None)
 7     # 查看该文件夹下所有文件
 8     files_dir = os.listdir(path)
 9     # 用于存放图片名
10     path_list = []
11     # 用于存放图片对应的label
12     label_list = []
13     # 遍历该文件夹下的所有文件
14     for file_dir in files_dir:
15         # 如果某文件是图片,则将其文件名以及对应的label取出,分别放入path_list和label_list这两个列表中
16         if os.path.splitext(file_dir)[1] == ".jpg":
17             path_list.append(file_dir)
18             index = int(os.path.splitext(file_dir)[0])
19             label_list.append(df_label.iat[index, 0])
20 
21     # 将两个列表写进dataset.csv文件
22     path_s = pd.Series(path_list)
23     label_s = pd.Series(label_list)
24     df = pd.DataFrame()
25     df['path'] = path_s
26     df['label'] = label_s
27     df.to_csv(path+'\\dataset.csv', index=False, header=False)
28 
29 
30 def main():
31     # 指定文件夹路径
32     train_path = 'F:\\0gold\\ML\\LHY_class\\FaceData\\train'
33     val_path = 'F:\\0gold\\ML\\LHY_class\\FaceData\\val'
34     data_label(train_path)
35     data_label(val_path)
36 
37 if __name__ == "__main__":
38     main()

  OK,代码执行完毕,让我们来看一看data-label对照表里面具体是什么样子吧! 

2.2.2 重写Dataset类

  首先介绍一下Pytorch中Dataset类:Dataset类是Pytorch中图像数据集中最为重要的一个类,也是Pytorch中所有数据集加载类中应该继承的父类。其中父类中的两个私有成员函数getitem()和len()必须被重载,否则将会触发错误提示。其中getitem()可以通过索引获取数据,len()可以获取数据集的大小。在Pytorch源码中,Dataset类的声明如下:

 1 class Dataset(object):
 2     """An abstract class representing a Dataset.
 3 
 4     All other datasets should subclass it. All subclasses should override
 5     ``__len__``, that provides the size of the dataset, and ``__getitem__``,
 6     supporting integer indexing in range from 0 to len(self) exclusive.
 7     """
 8 
 9     def __getitem__(self, index):
10         raise NotImplementedError
11 
12     def __len__(self):
13         raise NotImplementedError
14 
15     def __add__(self, other):
16         return ConcatDataset([self, other])

   我们通过继承Dataset类来创建我们自己的数据加载类,命名为FaceDataset。

1 import torch
2 from torch.utils import data
3 import numpy as np
4 import pandas as pd
5 import cv2
6 
7 class FaceDataset(data.Dataset):

   首先要做的是类的初始化。之前的data-label对照表已经创建完毕,在加载数据时需用到其中的信息。因此在初始化过程中,我们需要完成对data-label对照表中数据的读取工作。

  通过pandas库读取数据,随后将读取到的数据放入list或numpy中,方便后期索引。

 1 # 初始化
 2 def __init__(self, root):
 3     super(FaceDataset, self).__init__()
 4     # root为train或val文件夹的地址    
 5     self.root = root
 6     # 读取data-label对照表中的内容
 7     df_path = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[0]) # 读取第一列文件名
 8     df_label = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[1]) # 读取第二列label
 9     # 将其中内容放入numpy,方便后期索引
10     self.path = np.array(df_path)[:, 0]
11     self.label = np.array(df_label)[:, 0]

  接着就要重写getitem()函数了,该函数的功能是加载数据。在前面的初始化部分,我们已经获取了所有图片的地址,在这个函数中,我们就要通过地址来读取数据。

  由于是读取图片数据,因此仍然借助opencv库。需要注意的是,之前可视化数据部分将像素值恢复为人脸图片并保存,得到的是3通道的灰色图(每个通道都完全一样),而在这里我们只需要用到单通道,因此在图片读取过程中,即使原图本来就是灰色的,但我们还是要加入参数从cv2.COLOR_BGR2GARY,保证读出来的数据是单通道的。读取出来之后,可以考虑进行一些基本的图像处理操作,如通过高斯模糊降噪、通过直方图均衡化来增强图像等(经试验证明,在本次作业中,直方图均衡化并没有什么卵用,而高斯降噪甚至会降低正确率,可能是因为图片分辨率本来就较低,模糊后基本上什么都看不清了吧)。读出的数据是48X48的,而后续卷积神经网络中nn.Conv2d() API所接受的数据格式是(batch_size, channel, width, higth),本次图片通道为1,因此我们要将48X48 reshape为1X48X48。

 1 # 读取某幅图片,item为索引号
 2 def __getitem__(self, item):
 3     face = cv2.imread(self.root + '\\' + self.path[item])
 4     # 读取单通道灰度图
 5     face_gray = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY) 
 6     # 高斯模糊
 7     # face_Gus = cv2.GaussianBlur(face_gray, (3,3), 0)
 8     # 直方图均衡化
 9     face_hist = cv2.equalizeHist(face_gray)
10     # 像素值标准化
11     face_normalized = face_hist.reshape(1, 48, 48) / 255.0 # 为与pytorch中卷积神经网络API的设计相适配,需reshape原图
12     # 用于训练的数据需为tensor类型
13     face_tensor = torch.from_numpy(face_normalized) # 将python中的numpy数据类型转化为pytorch中的tensor数据类型
14     face_tensor = face_tensor.type('torch.FloatTensor') # 指定为'torch.FloatTensor'型,否则送进模型后会因数据类型不匹配而报错
15     label = self.label[item]
16     return face_tensor, label

   最后就是重写len()函数获取数据集大小了。self.path中存储着所有的图片名,获取self.path第一维的大小,即为数据集的大小。

1 # 获取数据集样本个数
2 def __len__(self):
3     return self.path.shape[0]

  完整代码:

 1 class FaceDataset(data.Dataset):
 2     # 初始化
 3     def __init__(self, root):
 4         super(FaceDataset, self).__init__()
 5         self.root = root
 6         df_path = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[0])
 7         df_label = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[1])
 8         self.path = np.array(df_path)[:, 0]
 9         self.label = np.array(df_label)[:, 0]
10 
11     # 读取某幅图片,item为索引号
12     def __getitem__(self, item):
13         face = cv2.imread(self.root + '\\' + self.path[item])
14         # 读取单通道灰度图
15         face_gray = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY) 
16         # 高斯模糊
17         # face_Gus = cv2.GaussianBlur(face_gray, (3,3), 0)
18         # 直方图均衡化
19         face_hist = cv2.equalizeHist(face_gray)
20         # 像素值标准化
21         face_normalized = face_hist.reshape(1, 48, 48) / 255.0 # 为与pytorch中卷积神经网络API的设计相适配,需reshape原图
22         # 用于训练的数据需为tensor类型
23         face_tensor = torch.from_numpy(face_normalized) # 将python中的numpy数据类型转化为pytorch中的tensor数据类型
24         face_tensor = face_tensor.type('torch.FloatTensor') # 指定为'torch.FloatTensor'型,否则送进模型后会因数据类型不匹配而报错
25         label = self.label[item]
26         return face_tensor, label
27 
28     # 获取数据集样本个数
29     def __len__(self):
30         return self.path.shape[0]
View Code

2.2.3 数据集的使用

  到此为止,我们已经成功地写好了自己的数据集加载类。那么这个类该如何使用呢?下面笔者将以训练集(train文件夹下的数据)加载为例,讲一下整个数据集加载类在模型训练过程中的使用方法。

  首先,我们需要将这个类实例化。

1 # 数据集实例化(创建数据集)
2 train_dataset = FaceDataset(root='E:\\WSD\\HW3\\FaceData\\train')

  train_dataset即为我们实例化的训练集,要想加载其中的数据,还需要DataLoader类的辅助。DataLoader类总是配合Dataset类一起使用,DataLoader类可以帮助我们分批次读取数据,也可以通过这个类选择读取数据的方式(顺序 or 随机乱序),还可以选择并行加载数据等,这个类并不要我们重写。

1 # 载入数据并分割batch
2 train_loader = data.DataLoader(train_dataset, batch_size)

  最后,我们就能直接从train_loader中直接加载出数据和label了,而且每次都会加载出一个批次(batch)的数据和label。

1 for images, labels in train_loader:
2     '''
3     通过images和labels训练模型
4     '''

2.3 网络模型搭建

   通过Pytorch搭建基于卷积神经网络的分类器。刚开始是自己设计的网络模型,在训练时发现准确度一直上不去,折腾一周后走投无路,后来在github上找到了一个做表情识别的开源项目,用的是这个项目的模型结构,但还是没能达到项目中的精度(acc在74%)。下图为该开源项目中公布的两个模型结构,笔者用的是Model B ,且只采用了其中的卷积-全连接部分,如果大家希望进一步提高模型的表现能力,可以考虑向模型中添加Face landmarks + HOG features 部分。

  可以看出,在Model B 的卷积部分,输入图片shape为48X48X1,经过一个3X3X64卷积核的卷积操作,再进行一次2X2的池化,得到一个24X24X64的feature map 1(以上卷积和池化操作的步长均为1,每次卷积前的padding为1,下同)。将feature map 1经过一个3X3X128卷积核的卷积操作,再进行一次2X2的池化,得到一个12X12X128的feature map 2。将feature map 2经过一个3X3X256卷积核的卷积操作,再进行一次2X2的池化,得到一个6X6X256的feature map 3。卷积完毕,数据即将进入全连接层。进入全连接层之前,要进行数据扁平化,将feature map 3拉一个成长度为6X6X256=9216的一维tensor。随后数据经过dropout后被送进一层含有4096个神经元的隐层,再次经过dropout后被送进一层含有1024个神经元的隐层,之后经过一层含256个神经元的隐层,最终经过含有7个神经元的输出层。一般再输出层后都会加上softmax层,取概率最高的类别为分类结果。

  我们可以通过继承nn.Module来定义自己的模型类。以下代码实现了上述的模型结构。需要注意的是,在代码中,数据经过最后含7个神经元的线性层后就直接输出了,并没有经过softmax层。这是为什么呢?其实这和Pytorch在这一块的设计机制有关。因为在实际应用中,softmax层常常和交叉熵这种损失函数联合使用,因此Pytorch在设计时,就将softmax运算集成到了交叉熵损失函数CrossEntropyLoss()内部,如果使用交叉熵作为损失函数,就默认在计算损失函数前自动进行softmax操作,不需要我们额外加softmax层。Tensorflow也有类似的机制。

 1 class FaceCNN(nn.Module):
 2     # 初始化网络结构
 3     def __init__(self):
 4         super(FaceCNN, self).__init__()
 5         
 6         # 第一次卷积、池化
 7         self.conv1 = nn.Sequential(
 8             # 输入通道数in_channels,输出通道数(即卷积核的通道数)out_channels,卷积核大小kernel_size,步长stride,对称填0行列数padding
 9             # input:(bitch_size, 1, 48, 48), output:(bitch_size, 64, 48, 48), (48-3+2*1)/1+1 = 48
10             nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1), # 卷积层
11             nn.BatchNorm2d(num_features=64), # 归一化
12             nn.RReLU(inplace=True), # 激活函数
13             # output(bitch_size, 64, 24, 24)
14             nn.MaxPool2d(kernel_size=2, stride=2), # 最大值池化
15         )
16         
17         # 第二次卷积、池化
18         self.conv2 = nn.Sequential(
19             # input:(bitch_size, 64, 24, 24), output:(bitch_size, 128, 24, 24), (24-3+2*1)/1+1 = 24
20             nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
21             nn.BatchNorm2d(num_features=128),
22             nn.RReLU(inplace=True),
23             # output:(bitch_size, 128, 12 ,12)
24             nn.MaxPool2d(kernel_size=2, stride=2),
25         )
26         
27         # 第三次卷积、池化
28         self.conv3 = nn.Sequential(
29             # input:(bitch_size, 128, 12, 12), output:(bitch_size, 256, 12, 12), (12-3+2*1)/1+1 = 12
30             nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
31             nn.BatchNorm2d(num_features=256),
32             nn.RReLU(inplace=True),
33             # output:(bitch_size, 256, 6 ,6)
34             nn.MaxPool2d(kernel_size=2, stride=2),
35         )
36 
37         # 参数初始化
38         self.conv1.apply(gaussian_weights_init)
39         self.conv2.apply(gaussian_weights_init)
40         self.conv3.apply(gaussian_weights_init)
41 
42         # 全连接层
43         self.fc = nn.Sequential(
44             nn.Dropout(p=0.2),
45             nn.Linear(in_features=256*6*6, out_features=4096),
46             nn.RReLU(inplace=True),
47             nn.Dropout(p=0.5),
48             nn.Linear(in_features=4096, out_features=1024),
49             nn.RReLU(inplace=True),
50             nn.Linear(in_features=1024, out_features=256),
51             nn.RReLU(inplace=True),
52             nn.Linear(in_features=256, out_features=7),
53         )
54 
55     # 前向传播
56     def forward(self, x):
57         x = self.conv1(x)
58         x = self.conv2(x)
59         x = self.conv3(x)
60         # 数据扁平化
61         x = x.view(x.shape[0], -1)
62         y = self.fc(x)
63         return y

 2.4 训练模型

  有了模型,就可以通过数据的前向传播和误差的反向传播来训练模型了。在此之前,还需要指定优化器(即学习率更新的方式)、损失函数以及训练轮数、学习率等超参数。

  在本次作业中,我们采用的优化器是SGD,即随机梯度下降,其中参数weight_decay为正则项系数;损失函数采用的是交叉熵;可以考虑使用学习率衰减。

 1 def train(train_dataset, batch_size, epochs, learning_rate, wt_decay):
 2     # 载入数据并分割batch
 3     train_loader = data.DataLoader(train_dataset, batch_size)
 4     # 构建模型
 5     model = FaceCNN()
 6     # 损失函数
 7     loss_function = nn.CrossEntropyLoss()
 8     # 优化器
 9     optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay)
10     # 学习率衰减
11     # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8)
12     # 逐轮训练
13     for epoch in range(epochs):
14         # 记录损失值
15         loss_rate = 0
16         # scheduler.step() # 学习率衰减
17         model.train() # 模型训练
18         for images, labels in train_loader:
19             # 梯度清零
20             optimizer.zero_grad()
21             # 前向传播
22             output = model.forward(images)
23             # 误差计算
24             loss_rate = loss_function(output, labels)
25             # 误差的反向传播
26             loss_rate.backward()
27             # 更新参数
28             optimizer.step()

 2.5 模型的保存与加载

  我们训练的这个模型相对较小,因此可以直接保存整个模型(包括结构和参数)。

1 # 模型保存
2 torch.save(model, 'model_net1.pkl')
1 # 模型加载
2 model_parm =  'model_net1.pkl'
3 model = torch.load(net_parm)

 三、源码分享

3.1 源代码

  代码在CPU上跑起来较慢,视超参数和机器性能不同,一般跑完需耗时几小时到几十小时不等。代码执行时,每轮输出一次损失值,每5轮输出一次在训练集和验证集上的正确率。有条件的可以在GPU上尝试。

  1 import torch
  2 import torch.utils.data as data
  3 import torch.nn as nn
  4 import torch.optim as optim
  5 import numpy as np
  6 import pandas as pd
  7 import cv2
  8 
  9 # 参数初始化
 10 def gaussian_weights_init(m):
 11     classname = m.__class__.__name__
 12     # 字符串查找find,找不到返回-1,不等-1即字符串中含有该字符
 13     if classname.find('Conv') != -1:
 14         m.weight.data.normal_(0.0, 0.04)
 15 
 16 # 人脸旋转,尝试过但效果并不好,本次并未用到
 17 def imgProcess(img):
 18     # 通道分离
 19     (b, g, r) = cv2.split(img)
 20     # 直方图均衡化
 21     bH = cv2.equalizeHist(b)
 22     gH = cv2.equalizeHist(g)
 23     rH = cv2.equalizeHist(r)
 24 
 25     # 顺时针旋转15度矩阵
 26     M0 = cv2.getRotationMatrix2D((24,24),15,1)
 27     # 逆时针旋转15度矩阵
 28     M1 = cv2.getRotationMatrix2D((24,24),15,1)
 29     # 旋转
 30     gH = cv2.warpAffine(gH, M0, (48, 48))
 31     rH = cv2.warpAffine(rH, M1, (48, 48))
 32     # 通道合并
 33     img_processed = cv2.merge((bH, gH, rH))
 34     return img_processed
 35 
 36 # 验证模型在验证集上的正确率
 37 def validate(model, dataset, batch_size):
 38     val_loader = data.DataLoader(dataset, batch_size)
 39     result, num = 0.0, 0
 40     for images, labels in val_loader:
 41         pred = model.forward(images)
 42         pred = np.argmax(pred.data.numpy(), axis=1)
 43         labels = labels.data.numpy()       
 44         result += np.sum((pred == labels))
 45         num += len(images)
 46     acc = result / num
 47     return acc
 48 
 49 class FaceDataset(data.Dataset):
 50     # 初始化
 51     def __init__(self, root):
 52         super(FaceDataset, self).__init__()
 53         self.root = root
 54         df_path = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[0])
 55         df_label = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[1])
 56         self.path = np.array(df_path)[:, 0]
 57         self.label = np.array(df_label)[:, 0]
 58 
 59     # 读取某幅图片,item为索引号
 60     def __getitem__(self, item):
 61         # 图像数据用于训练,需为tensor类型,label用numpy或list均可
 62         face = cv2.imread(self.root + '\\' + self.path[item])
 63         # 读取单通道灰度图
 64         face_gray = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY) 
 65         # 高斯模糊
 66         # face_Gus = cv2.GaussianBlur(face_gray, (3,3), 0)
 67         # 直方图均衡化
 68         face_hist = cv2.equalizeHist(face_gray)
 69         # 像素值标准化
 70         face_normalized = face_hist.reshape(1, 48, 48) / 255.0
 71         face_tensor = torch.from_numpy(face_normalized)
 72         face_tensor = face_tensor.type('torch.FloatTensor')
 73         label = self.label[item]
 74         return face_tensor, label
 75 
 76     # 获取数据集样本个数
 77     def __len__(self):
 78         return self.path.shape[0]
 79 
 80 class FaceCNN(nn.Module):
 81     # 初始化网络结构
 82     def __init__(self):
 83         super(FaceCNN, self).__init__()
 84         
 85         # 第一次卷积、池化
 86         self.conv1 = nn.Sequential(
 87             # 输入通道数in_channels,输出通道数(即卷积核的通道数)out_channels,卷积核大小kernel_size,步长stride,对称填0行列数padding
 88             # input:(bitch_size, 1, 48, 48), output:(bitch_size, 64, 48, 48), (48-3+2*1)/1+1 = 48
 89             nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1), # 卷积层
 90             nn.BatchNorm2d(num_features=64), # 归一化
 91             nn.RReLU(inplace=True), # 激活函数
 92             # output(bitch_size, 64, 24, 24)
 93             nn.MaxPool2d(kernel_size=2, stride=2), # 最大值池化
 94         )
 95         
 96         # 第二次卷积、池化
 97         self.conv2 = nn.Sequential(
 98             # input:(bitch_size, 64, 24, 24), output:(bitch_size, 128, 24, 24), (24-3+2*1)/1+1 = 24
 99             nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
100             nn.BatchNorm2d(num_features=128),
101             nn.RReLU(inplace=True),
102             # output:(bitch_size, 128, 12 ,12)
103             nn.MaxPool2d(kernel_size=2, stride=2),
104         )
105         
106         # 第三次卷积、池化
107         self.conv3 = nn.Sequential(
108             # input:(bitch_size, 128, 12, 12), output:(bitch_size, 256, 12, 12), (12-3+2*1)/1+1 = 12
109             nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
110             nn.BatchNorm2d(num_features=256),
111             nn.RReLU(inplace=True),
112             # output:(bitch_size, 256, 6 ,6)
113             nn.MaxPool2d(kernel_size=2, stride=2),
114         )
115 
116         # 参数初始化
117         self.conv1.apply(gaussian_weights_init)
118         self.conv2.apply(gaussian_weights_init)
119         self.conv3.apply(gaussian_weights_init)
120 
121         # 全连接层
122         self.fc = nn.Sequential(
123             nn.Dropout(p=0.2),
124             nn.Linear(in_features=256*6*6, out_features=4096),
125             nn.RReLU(inplace=True),
126             nn.Dropout(p=0.5),
127             nn.Linear(in_features=4096, out_features=1024),
128             nn.RReLU(inplace=True),
129             nn.Linear(in_features=1024, out_features=256),
130             nn.RReLU(inplace=True),
131             nn.Linear(in_features=256, out_features=7),
132         )
133 
134     # 前向传播
135     def forward(self, x):
136         x = self.conv1(x)
137         x = self.conv2(x)
138         x = self.conv3(x)
139         # 数据扁平化
140         x = x.view(x.shape[0], -1)
141         y = self.fc(x)
142         return y
143 
144 def train(train_dataset, val_dataset, batch_size, epochs, learning_rate, wt_decay):
145     # 载入数据并分割batch
146     train_loader = data.DataLoader(train_dataset, batch_size)
147     # 构建模型
148     model = FaceCNN()
149     # 损失函数
150     loss_function = nn.CrossEntropyLoss()
151     # 优化器
152     optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay)
153     # 学习率衰减
154     # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8)
155     # 逐轮训练
156     for epoch in range(epochs):
157         # 记录损失值
158         loss_rate = 0
159         # scheduler.step() # 学习率衰减
160         model.train() # 模型训练
161         for images, labels in train_loader:
162             # 梯度清零
163             optimizer.zero_grad()
164             # 前向传播
165             output = model.forward(images)
166             # 误差计算
167             loss_rate = loss_function(output, labels)
168             # 误差的反向传播
169             loss_rate.backward()
170             # 更新参数
171             optimizer.step()
172             
173         # 打印每轮的损失
174         print('After {} epochs , the loss_rate is : '.format(epoch+1), loss_rate.item())
175         if epoch % 5 == 0:
176             model.eval() # 模型评估
177             acc_train = validate(model, train_dataset, batch_size)
178             acc_val = validate(model, val_dataset, batch_size)
179             print('After {} epochs , the acc_train is : '.format(epoch+1), acc_train)
180             print('After {} epochs , the acc_val is : '.format(epoch+1), acc_val)
181 
182     return model
183 
184 def main():
185     # 数据集实例化(创建数据集)
186     train_dataset = FaceDataset(root='E:\\WSD\\HW3\\FaceData\\train')
187     val_dataset = FaceDataset(root='E:\\WSD\\HW3\\FaceData\\val')
188     # 超参数可自行指定
189     model = train(train_dataset, val_dataset, batch_size=128, epochs=100, learning_rate=0.1, wt_decay=0)
190     # 保存模型
191     torch.save(model, 'model_net1.pkl')
192 
193 
194 if __name__ == '__main__':
195     main()
View Code

 3.2 说明

  这是台湾大学李宏毅老师机器学习课程(2019年春季)第三次作业。在该数据集上,只用卷积神经网络和其他辅助手段,能达到的最高分类正确率在75%左右。我前后折腾了近3周,一方面因为能力有限,无人交流指导,另一方面是因为算力有限(穷逼一个,没有GPU),最终正确率也仅有63%。上面的源代码不是我的最终模型,一是因为我的模型本来就不好,过拟合有点严重;二是因为我希望大家能自己动手体验一波调参的乐趣。在此抛砖引玉,要是有哪个小伙伴有好的改进方法,欢迎来和我交流鸭~

 

参考资料:

  本次作业发布地址:https://ntumlta2019.github.io/ml-web-hw3/

  面部表情识别GitHub地址:https://github.com/amineHorseman/facial-expression-recognition-using-cnn

  Pytorch制作数据集:https://ptorch.com/news/215.html

            https://blog.csdn.net/Teeyohuang/article/details/79587125

posted @ 2019-05-24 11:08  秋沐霖  阅读(32601)  评论(32编辑  收藏  举报
Live2D