02.复杂度分析与稳定性(数据结构算法基本)
- 最好情况时间复杂度
- 最坏情况时间复杂度
- 平均情况时间复杂度
// n 表示数组 array 的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) {
pos = i;
break;
}
}
return pos;
}
因为,要查找的变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。所以,不同的情况下,这段代码的时间复杂度是不一样的。
最好和和最坏都是极端情况,出现的概率不大
所以要分析平均情况的复杂度
- 均摊时间复杂度
算法稳定性
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。
所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
是否是原地算法
何为原地算法?
- 不依赖额外的资源或者依赖少数的额外资源,仅依靠输出来覆盖输入
- 空间复杂度为 𝑂(1) 的都可以认为是原地算法
- 非原地算法,称为 Not-in-place 或者 Out-of-place
冒泡排序属于 In-place