ACM: FZU 2110 Star - 数学几何 - 水题
Description
Overpower often go to the playground with classmates. They play and chat on the playground. One day, there are a lot of stars in the sky. Suddenly, one of Overpower’s classmates ask him: “How many acute triangles whose inner angles are less than 90 degrees (regarding stars as points) can be found? Assuming all the stars are in the same plane”. Please help him to solve this problem.
Input
The first line of the input contains an integer T (T≤10), indicating the number of test cases.
For each test case:
The first line contains one integer n (1≤n≤100), the number of stars.
The next n lines each contains two integers x and y (0≤|x|, |y|≤1,000,000) indicate the points, all the points are distinct.
Output
For each test case, output an integer indicating the total number of different acute triangles.
Sample Input
1 3 0 0 10 0 5 1000
Sample Output
1
求锐角三角形的个数;
数学结论 : 锐角三角形 任意边满足 a^2<b^2+c^2 ;
AC代码:
#include"algorithm" #include"iostream" #include"cstring" #include"cstdlib" #include"cstdio" #include"string" #include"vector" #include"stack" #include"queue" #include"cmath" #include"map" using namespace std; typedef long long LL ; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define FK(x) cout<<"["<<x<<"]\n" #define memset(x,y) memset(x,y,sizeof(x)) #define memcpy(x,y) memcpy(x,y,sizeof(x)) #define bigfor(T) for(int qq=1;qq<= T ;qq++) struct Star { LL x; LL y; } st[200]; bool cmp(LL a,LL b) { return a>b; } bool check(int i,int j,int k) { LL s[3]; s[0]=(st[i].x-st[j].x)*(st[i].x-st[j].x)+(st[i].y-st[j].y)*(st[i].y-st[j].y); s[1]=(st[i].x-st[k].x)*(st[i].x-st[k].x)+(st[i].y-st[k].y)*(st[i].y-st[k].y); s[2]=(st[k].x-st[j].x)*(st[k].x-st[j].x)+(st[k].y-st[j].y)*(st[k].y-st[j].y); // FK(s[0]); // FK(s[1]); // FK(s[2]); sort(s,s+3,cmp); if(s[0]<s[1]+s[2])return 1; return 0; } int main() { int T; int n; scanf("%d",&T); bigfor(T) { scanf("%d",&n); for(int i=0; i<n; i++) { scanf("%I64d%I64d",&st[i].x,&st[i].y); } LL ans=0; for(int i=0; i<n; i++) { for(int j=i+1; j<n; j++) { for(int k=j+1; k<n; k++) { if(check(i,j,k)) ans++; } } } printf("%I64d\n",ans); } return 0; }