ACM: Mr. Kitayuta's Colorful Graph-并查集-解题报
Mr. Kitayuta's Colorful Graph
Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Description Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi. Mr. Kitayuta wants you to process the following q queries. In the i-th query, he gives you two integers — ui and vi. Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly. Input The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively. The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj). The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries. Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi. Output For each query, print the answer in a separate line. Sample Input Input 4 5 1 2 1 1 2 2 2 3 1 2 3 3 2 4 3 3 1 2 3 4 1 4 Output 2 1 0 Input 5 7 1 5 1 2 5 1 3 5 1 4 5 1 1 2 2 2 3 2 3 4 2 5 1 5 5 1 2 5 1 5 1 4 Output 1 1 1 1 2 Hint Let's consider the first sample.
The figure above shows the first sample. Vertex 1 and vertex 2 are connected by color 1 and 2. Vertex 3 and vertex 4 are connected by color 3. Vertex 1 and vertex 4 are not connected by any single color.
题目还是比较水,很简单的并查集,思路清晰就够了;
AC代码:
#include"iostream" #include"cstdio" #include"cstring" #include"cmath" #include"algorithm" using namespace std; const int MX=110; int CL[101]; struct nde { int p[MX]; //记录每个颜色下的根 } cmap[MX]; struct node { int a,b,c; //连接的点 a b 和颜色c } side[MX]; bool cmps(node a,node b) { return a.c<b.c; } struct nod { int u,v; //查询组 } Que[MX]; int find(int x,int c) { return cmap[c].p[x]==x?x:(cmap[c].p[x]=find(cmap[c].p[x],c)); //找到在颜色C下的根。 } void init() { //清空并初始化整个颜色图。 for(int i=1; i<=100; i++) for(int j=1; j<=100; j++) { cmap[i].p[j]=j; } } int main() { int n,m,q; while(~scanf("%d%d",&n,&m)) { init(); for(int i=1; i<=m; i++) { //把整个输入先全部记录下 scanf("%d%d%d",&side[i].a,&side[i].b,&side[i].c); } sort(side+1,side+1+m,cmps);//按照颜色排序; int tot=1; //tot 记录颜色的种类 CL[tot]=side[1].c;//记录下出现过的颜色 for(int i=1; i<=m; i++) { if(side[i].c!=CL[tot]) { //如果下一个颜色与上一个颜色不同记录进数组 CL CL[++tot]=side[i].c; } int rt1=find(side[i].a,side[i].c); //找到在颜色 C 下的根 int rt2=find(side[i].b,side[i].c); if(rt1!=rt2) { cmap[side[i].c].p[rt2]=rt1; //在颜色 C下将两点连接,更新根 } } scanf("%d",&q); for(int i=1; i<=q; i++) { scanf("%d%d",&Que[i].u,&Que[i].v); //单组输入查询 int ans=0; for(int j=1; j<=tot; j++) { //每个出现过的颜色下都查询一次 int rt1=find(Que[i].u,CL[j]); int rt2=find(Que[i].v,CL[j]); if(rt1==rt2)ans++; //如果是一个联通块答案加一 } printf("%d\n",ans); //输出该组的答案 } } return 0; }