CodeVS 1039-数的划分

原题

题目描述 Description

将整数n分成k份,且每份不能为空,任意两种划分方案不能相同(不考虑顺序)。
例如:n=7,k=3,下面三种划分方案被认为是相同的。
1 1 5

1 5 1

5 1 1
问有多少种不同的分法。

输入描述 Input Description

n,k (6<n<=200,2<=k<=6)

输出描述 Output Description

一个整数,即不同的分法。

样例输入 Sample Input

 7 3

样例输出 Sample Output

4

数据范围及提示 Data Size & Hint

 {四种分法为:1,1,5;1,2,4;1,3,3;2,2,3;}

 

 

题意

求自然数N分成K份的方案数。

题解

这是一道十分经典的划分型DP题。

首先定义数组F,用Fi,j表示数字i被分为j份的方案数。

则可以推出状态转移方程f[i,j]=f[i-j,j]+f[i-1,j-1],具体解释:

1、f[i-j,j]表示的是将i分为不包含1的方案的总个数,例如,4(=7-3)分成3份可以分为{1,1,2},则7可以分为{1+1,1+1,2+1}->{2,2,3}【共1种【注意下划线部分

2、f[i-1,j-1]表示的是将i分为最小值为1的方案的总个数,例如,6(=7-1)分成2(=3-1)份可以分为{1,5}{2,4}{3,3},则7可以分为{1,5,1}{2,4,1}{3,3,1}【共3种

3、所以f[7,3]=f[4,3]+f[6,2]=1+3=4

推出方程这道题也就解决了,下面代码:

 1 var a,f:array[-100..200,0..10] of longint;
 2 var i,j,n,k:longint;
 3 begin
 4   readln(n,k);
 5   for i:=1 to n do
 6   begin
 7     f[i,1]:=1;
 8     for j:=2 to k do f[i,j]:=f[i-j,j]+f[i-1,j-1];
 9   end;
10   writeln(f[n,k]);
11 end.
View Code

 

 

 

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

posted @ 2017-01-16 21:58  ALHDLIOX  阅读(295)  评论(0编辑  收藏  举报