机器学习32道选择题
1. 丰巢柜中有A、B、C、D、E、F六个人的快递,每个人各有两个快递。现在随机取出5个快递,那么5个快递中至少有2个快递属于同一个人的概率是多少?(0.757575757575758)
2. 假设有三个人同时参加这场笔试,假设满分为1,三个人的得分符合分布U(0,1)。那么三个人最低分的期望为? (1/4)
3.
ABCD
4.
Bagging降方差
Boosting降偏差
5. EM算法是(无监督)
6.
7.
GBDT对异常值敏感。学习的是残差,异常值的残差大
8. A可能是错误的
为什么LR加入正则化Variance会增大,正则化之后参数更平滑了,不是变小吗?
评估代价函数有两个重要的指标一个是偏差一个是方差。过拟合是因为低偏差和高方差,所以在训练集上表现好,在测试集上表现差。加入正则化项就是为了限制模型的复杂度从而减少方差,我是这么理解的。