计算字符串距离
描述:
Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。
Ex:
字符串A:abcdefg
字符串B: abcdef
通过增加或是删掉字符”g”的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。
要求:
给定任意两个字符串,写出一个算法计算它们的编辑距离。
请实现如下接口
/* 功能:计算两个字符串的距离
* 输入:字符串A和字符串B
* 输出:无
* 返回:如果成功计算出字符串的距离,否则返回-1
*/
public static int calStringDistance (String charA, String charB)
{
return 0;
}
输入:输入两个字符串
输出
得到计算结果
样例输入 abcdefg abcdef
样例输出 1
分析:
如果有两个字符串A和B,如果它们的第一个字符是相同的,只要计算A[2,…,lenA]和B[2,…,lenB]的距离。如果它们的第一个字符是不相同的,那么可以进行如下的操作。
1. 删除A的第一个字符,然后计算A[2,…,lenA]和B[1,…,lenB]的距离;
2. 删除B的第一个字符,然后计算A[1,…,lenA]和B[2,…,lenB]的距离;
3. 修改A的第一个字符为B的第一个字符,然后计算A[2,…,lenA]和B[2,…,lenB]的距离;
4. 修改B的第一个字符为A的第一个字符,然后计算A[2,…,lenA]和B[2,…,lenB]的距离;
5. 增加A的第一个字符到B第一个字符之前,然后计算A[2,…,lenA]和B[1,…,lenB]的距离;
6. 增加B的第一个字符到A第一个字符之前,然后计算A[1,…,lenA]和B[2,…,lenB]的距离。
从上面的分析可以看出,如果A和B的第一个字符不相同,那么可以不管之后会变成什么样,就可以把上面的6个操作合并成下面3个。
1. 一步操作之后,计算A[2,…,lenA]和B[1,…,lenB]的距离;
2. 一步操作之后,计算A[1,…,lenA]和B[2,…,lenB]的距离;
3. 一步操作之后,计算A[2,…,lenA]和B[2,…,lenB]的距离。
本例是进行删除操作
import java.util.*; class Main6{ public static void main(String[] args) { Scanner cin=new Scanner(System.in); String str1=cin.next(); String str2=cin.next(); int sum=calculateDistance(0,0,str1.length(),str2.length(),str1.toCharArray(),str2.toCharArray()); System.out.println(sum); } //pa,pb,分别是A字符串,B字符串的下标 public static int calculateDistance(int pa,int pb,int lenA,int lenB,final char[] A,final char[] B){ if(pa>=lenA){ if(pb>=lenB){ return 0; }else{ return lenB-pb; } } if(pb>=lenB){ if(pa>=lenA){ return 0; }else{ return lenA-pa; } } if(A[pa]==B[pb]){ return calculateDistance(pa+1,pb+1,lenA,lenB,A,B); }else{ int d1=calculateDistance(pa,pb+1,lenA,lenB,A,B); int d2=calculateDistance(pa+1,pb,lenA,lenB,A,B); int d3=calculateDistance(pa+1,pb+1,lenA,lenB,A,B); return 1+getMin(d1,d2,d3); } } //获取三个中最小的距离 public static int getMin(int a,int b,int c){ return a<b?(a<c?a:c):(b<c?b:c); } }
获取两行的元素,直接就可以用:
String str1=cin.next();
String str2=cin.next();