Crypto_BUUCTF_WriteUp | rsarsa
题目
Math is cool! Use the RSA algorithm to decode the secret message, c, p, q, and e are parameters for the RSA algorithm.
p = 9648423029010515676590551740010426534945737639235739800643989352039852507298491399561035009163427050370107570733633350911691280297777160200625281665378483
q = 11874843837980297032092405848653656852760910154543380907650040190704283358909208578251063047732443992230647903887510065547947313543299303261986053486569407
e = 65537
c = 83208298995174604174773590298203639360540024871256126892889661345742403314929861939100492666605647316646576486526217457006376842280869728581726746401583705899941768214138742259689334840735633553053887641847651173776251820293087212885670180367406807406765923638973161375817392737747832762751690104423869019034
Use RSA to find the secret message
分析
根据题目,我们的目标是计算消息明文 m。根据公式 \(m = c^{d}\mod n\),我们需要:
Step 1. 由 p,q,e 求解 d
Step 2. 由 c,d,p,q 求解 m
Step 1
根据 RSA 算法描述,通过扩展欧几里得算法计算 d
def ExEuclid(a, b):
# k
s0, s1, s2 = 1, 0, -1
# d
t0, t1, t2 = 0, 1, -1
if a < b:
temp = a
a = b
b = temp
while b != 1:
rem = a % b
quo = a // b # // 整数除法获得商
s2, t2 = s0 - s1 * quo, t0 - t1 * quo
s0, t0 = s1, t1
s1, t1 = s2, t2
a = b
b = rem
return t2
Step 2
这里我们使用 python 的 pow 函数直接计算结果
def rsarsa(p, q, e, c):
# n= pq
n = p * q
# φ(n) = (p-1)(q-1)
varphi_n = (p - 1) * (q - 1)
# ed ≡ 1 mod φ(n) → ed + k*φ(n) = 1
# Extend Euclidean Algorithm
d = ExEuclid(varphi_n, e)
print(d)
m = pow(c, d, n)
return m
完整代码
点击查看代码
p = 9648423029010515676590551740010426534945737639235739800643989352039852507298491399561035009163427050370107570733633350911691280297777160200625281665378483
q = 11874843837980297032092405848653656852760910154543380907650040190704283358909208578251063047732443992230647903887510065547947313543299303261986053486569407
e = 65537
c = 83208298995174604174773590298203639360540024871256126892889661345742403314929861939100492666605647316646576486526217457006376842280869728581726746401583705899941768214138742259689334840735633553053887641847651173776251820293087212885670180367406807406765923638973161375817392737747832762751690104423869019034
def ExEuclid(a, b):
# k
s0, s1, s2 = 1, 0, -1
# d
t0, t1, t2 = 0, 1, -1
if a < b:
temp = a
a = b
b = temp
while b != 1:
rem = a % b
quo = a // b # // 整数除法获得商
s2, t2 = s0 - s1 * quo, t0 - t1 * quo
s0, t0 = s1, t1
s1, t1 = s2, t2
a = b
b = rem
return t2
def rsarsa(p, q, e, c):
# n= pq
n = p * q
# φ(n) = (p-1)(q-1)
varphi_n = (p - 1) * (q - 1)
# ed ≡ 1 mod φ(n) → ed + k*φ(n) = 1
# Extend Euclidean Algorithm
d = ExEuclid(varphi_n, e)
print(d)
m = pow(c, d, n)
return m
flag = rsarsa(p, q, e, c)
print(flag)
Flag
flag{5577446633554466577768879988}