dsu on tree(树上启发式合并)

一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了

1、前置技能

1.链式前向星(vector 建图)

2.dfs 建树

3.剖分轻重链,轻重儿子

重儿子 一个结点的所有儿子中拥有最多子树的儿子
轻儿子 一个结点的所有儿子中不是重儿子的儿子
重边 父亲与重儿子的连边
轻边 父亲与轻儿子的连边
重链 一堆重边连接而成的链
轻链 一堆轻边连接而成的链

2、什么是 dsu on tree(树上启发式合并) ?

dsu on tree 其实就是个优雅的暴力算法,和它一起共被称为优雅暴力的算法还有莫队
所谓优雅的暴力大概是指:“优雅思想,暴力的操作”
例如莫队我们知道它是将整个区间分块,再将询问的区间排序,最后暴力的维护所有询问的区间
其中 "整个区间分块,询问的区间排序" 为优雅的思想,而 "暴力的维护所有询问的区间" 为暴力的操作
因为需要将询问的区间排序,我们就需要先将询问的区间保存下来,也就是要离线
dsu on tree 和莫队类似,也需要离线(它们同属于静态算法)

dsu on tree 优雅的思想:

对于以 u 为根的子树

①. 先统计它轻子树(轻儿子为根的子树)的答案,统计完后删除信息

②. 再统计它重子树(重儿子为根的子树)的答案 ,统计完后保留信息

③. 然后再将重子树的信息合并到 u上

④. 再去遍历 u 的轻子树,然后把轻子树的信息合并到 u 上

⑤. 判断 u 的信息是否需要传递给它的父节点(u 是否是它父节点的重儿子)

dsu on tree 暴力的操作

dsu on tree 暴力的操作体现于统计答案上(不同的题目统计方式不一样)

3、dsu on tree 的过程演示及代码

1.图示

  • 1 的重儿子为 2,轻儿子为 3

  • 2 的重儿子为 4,轻儿子为 5

  • 3 没有重儿子,没有轻儿子

  • 4 的重儿子为 6,没有轻儿子

  • 5 的重儿子为 7,没有轻儿子

  • 6 没有重儿子,没有轻儿子

  • 7 没有重儿子,没有轻儿子

为了更好观看,我们将节点与其重儿子的连线描红

我们从根节点1进入,先找1的轻儿子,发现3,进入3

3没有别的儿子可以进入了,于是统计3的信息

统计完后即将返回父节点 1

因为1-3的边没有被描红边、3不是1的重儿子(不传递3的信息),所以删除3的信息再返回 1

发现1没有别的轻儿子了,就找重儿子,发现2,进入2

进入2后,再找2的轻儿子,发现5,进入5

发现5没有轻儿子了,就找重儿子,发现7,进入 7

7 没有别的儿子可以进入了,于是统计 7 的信息

统计完后即将返回父节点 5

因为边5-7 有被描红边、7是5的重儿子,所以保留7的信息直接返回 5(传递7的信息的给5)

5 所有儿子都进入过了,于是统计 5 的信息

统计完后即将返回父节点 2

因为边2-5 没有被描红边、5不是2的重儿子,所以删除5的信息再返回 2

发现2没有其它轻儿子了,就找重儿子,发现4,进入4

发现4没有其它轻儿子了,就找重儿子,发现6,进入6

6 没有别的儿子可以进入了,于是统计 6 的信息

统计完后即将返回父节点 4

因为边4-6 有被描红边,6是4的重儿子,所以保留6的信息直接返回 4(传递6的信息的给4)

4 所有儿子都进入过了,于是统计 4 的信息

统计完后即将返回父节点 2

因为边2-4 有被描红边,4是2的重儿子,所以保留4的信息直接返回2(传递4的信息的给2)

2 所有儿子都进入过了,于是统计 2 的信息

2 接受了4传递的信息,但是并没有接受5传递给它的信息(被删除了)

于是 2 再进入5(轻儿子),统计一遍以 5 为根的子树的信息,再将该信息合并到 2上

统计完后 2 后即将返回父节点 1

因为边1-2 有被描红边,2是1的重儿子,所以保留2的信息直接返回1(传递2的信息的给1)

1 所有儿子都进入过了,于是统计 1 的信息

1 接受了2传递的信息,但是并没有接受3传递给它的信息(被删除了)

于是 1 再进入3(轻儿子),统计一遍以 3 为根的子树的信息,再将该信息合并到 1 上

至此,整个 dsu on tree 的过程结束

2.代码

struct Edge{
	int nex , to;
}edge[N << 1];
int head[N] , TOT;
void add_edge(int u , int v) // 链式前向星建图
{
	edge[++ TOT].nex = head[u] ;
	edge[TOT].to = v;
	head[u] = TOT;
}
int sz[N];   // sz[u] 表示以 u 为根的子树大小 
int hson[N]; // hson[u] 表示 u 的重儿子 
int HH;      // HH 表示当前根节点的重儿子 
void dfs(int u , int far)
{
	sz[u] = 1;
	for(int i = head[u] ; i ; i = edge[i].nex) // 链式前向星 
	{
		int v = edge[i].to;
		if(v == far) continue ;
		dfs(v , u); 
		sz[u] += sz[v];  
		if(sz[v] > sz[hson[u]]) hson[u] = v; // 选择 u 的重儿子 
	}
}
void calc(int u , int far , int val) // 统计答案 
{
	if(val == 1) ...; // val = 1,则添加信息 
	else ...;         // val = -1,则删除信息 
	......	
    for(int i = head[u] ; i ; i = edge[i].nex)
    {
        int v = edge[i].to;
        if(v == far || v == HH) continue ; // 如果 v 是当前根节点的重儿子,则跳过
        calc(v , u , val);
    }
} 
void dsu(int u , int far , int op)  // op 等于0表示不保留信息,等于1表示保留信息 
{
	for(int i = head[u] ; i ; i = edge[i].nex)
	{
		int v = edge[i].to;
		if(v == far || v == hson[u]) continue ; // 如果 v 是重儿子或者父亲节点就跳过 
		dsu(v , u , 0);     // 先遍历轻儿子 ,op = 0 :轻儿子的答案不做保留 
	}
	if(hson[u]) dsu(hson[u] , u , 1) , HH = hson[u];
	// 轻儿子都遍历完了,如果存在重儿子,遍历重儿子(事实上除了叶子节点每个点都必然有重儿子)
	// op = 1 , 保留重儿子的信息 
	// 当前是以 u 为根节点的子树,所以根节点的重儿子 HH = hson[u]
	calc(u , far , 1); // 再次遍历轻儿子统计答案
        HH = 0;			   // 遍历结束 ,即将返回父节点,所以取消标记 HH 
	if(!op) calc(u , far , -1); // 如果 op = 0,则 u 对于它的父亲来说是轻儿子,不需要将信息传递给它的父亲 
}

4.经典例题讲解

题目编号 题目链接 题解链接
CF600E https://codeforces.com/problemset/problem/600/E https://www.cnblogs.com/StarRoadTang/p/14028212.html
CF570D https://codeforces.com/problemset/problem/570/D https://www.cnblogs.com/StarRoadTang/p/14028239.html
CF208E https://codeforces.com/problemset/problem/208/E https://www.cnblogs.com/StarRoadTang/p/14028265.html
CF246E https://codeforces.com/problemset/problem/246/E https://www.cnblogs.com/StarRoadTang/p/14028271.html
CF1009F https://codeforces.com/problemset/problem/1009/F https://www.cnblogs.com/StarRoadTang/p/14028284.html
CF375D https://codeforces.com/problemset/problem/375/D https://www.cnblogs.com/StarRoadTang/p/14028290.html
wannafly Day2 E https://ac.nowcoder.com/acm/contest/4010/E?&headNav=acm https://www.cnblogs.com/StarRoadTang/p/14028292.html
牛客练习赛60E https://ac.nowcoder.com/acm/contest/4853/E https://www.cnblogs.com/StarRoadTang/p/14028296.html
ccpc2020长春站F题 https://codeforces.com/gym/102832/problem/F https://www.cnblogs.com/StarRoadTang/p/14028298.html
洛谷P4149 https://www.luogu.com.cn/problem/P4149 https://www.cnblogs.com/StarRoadTang/p/14028300.html
牛客练习赛81D https://ac.nowcoder.com/acm/contest/11171/D https://www.cnblogs.com/StarRoadTang/p/14958220.html

5.难题进阶

这是道较难的题,听说这也是 dsu on tree 的发明人专门为这个算法出的题

题目编号 题目链接 题解链接
CF741D https://codeforces.com/contest/741/problem/D https://www.cnblogs.com/StarRoadTang/p/14028301.html
    ┏┛ ┻━━━━━┛ ┻┓  
    ┃      ┃  
    ┃   ━         ┃  
    ┃ ┳┛   ┗┳     ┃  
    ┃             ┃  
    ┃   ┻       ┃  
    ┃            ┃  
    ┗━┓   ┏━━━┛  
      ┃   ┃   神兽保佑  
      ┃   ┃   代码无BUG!  
      ┃   ┗━━━━━━━━━┓  
      ┃           ┣┓  
      ┃             ┏┛  
      ┗━┓ ┓ ┏━━━┳ ┓ ┏━┛  
          ┃ ┫ ┫   ┃ ┫ ┫  
          ┗━┻━┛   ┗━┻━┛  
posted @ 2020-11-25 03:50  GsjzTle  阅读(3789)  评论(17编辑  收藏  举报