A three term boundary value problem

填个去年八月份的坑...

A three term boundary value problem

给定序列\(\{d_1,d_2,\ldots,d_{N-1}\}\),有\(au_{n+1}+bu_n+cu_{n-1}=d_n\)\(n=1,2,\ldots,N-1;u_0=u_N=0\)
求解序列\(\{u_n\}_{n=1}^{N-1}\)
\(U(x)=\sum\limits_{i=0}^N u_ix^i,D(x)=\sum\limits_{i=1}^{N-1}d_ix^i\)
根据\(\{u_i\}\)\(\{d_i\}\)的关系,容易得到:

\[\frac{a}{x}(U(x)-u_1x)+bU(x)+cx(U(x)-u_{N-1}x^{N-1})=D(x) \]

整理得到,

\[(a+bx+cx^2)U(x)=x(D(x)+au_1+cu_{N-1}x^N) \]

对于\(a+bx+cx^2=0\)的两个解\(r_{+},r_{-}\),若\(r_{+}\neq r_{-}\),则容易得到:

\[\begin{aligned} au_1+(cr_{+}^N)u_{N-1}=-D(r_{+})\\ au_1+(cr_{-}^N)u_{N-1}=-D(r_{-})\\ \end{aligned}\]

解出\(u_1,u_{N-1}\)即可。

\(r_{+}=r_{-}\),需要另外得到一个关于\(u_1,u_{N-1}\)的等式:

\(a+bx+c=c(x-k)^2\),有

\[c(x-k)^2U(x)=x(D(x)+au_1+cu_{N-1}x^N) \]

\(x\)微分:

\[c(x-k)^2\frac{dU(x)}{dx}+2c(x-k)U(x)=x(\frac{dD(x)}{dx}+cNu_{N-1}x^{N-1})+(D(x)+au_1+cu_{N-1}x^N) \]

\(x=k\),有,

\[0=k(D'(k)+cNu_{N-1}k^{N-1}) \]

posted @ 2021-05-20 10:21  Grice  阅读(58)  评论(0编辑  收藏  举报