杂题

题意

\(n\)个点的无向图,贡献为连通块个数的\(m\)次方,多次查询\(n\le 3\times 10^4,m\le 15\)

做法一

\(\hat {F(x)}\)为无向连通图个数\(EGF\)
\(\hat {G_m(x)}\)为答案的\(EGF\)
有:\(\hat{G_m(x)}=\sum \frac{\hat{F(x)}^i\times i^m}{i!}\)
显然:\(\hat{G_m(x)}=\hat{F(x)}\frac{d\hat{G_{m-1}(x)}}{d\hat{F(x)}}\),边界\(\hat{G_0(x)}=e^{\hat{F(x)}}\)
\(\frac{d\hat{G_{m-1}(x)}}{d\hat{F(x)}}=\frac{d\hat{G_{m-1}(x)}}{dx}\cdot \frac{dx}{d\hat{F(x)}}\)

做法二

\(x^m\)转成下降幂:\(x^m=\sum S_{m,i}x^{\underline i}\)
考虑组合意义,\(x^{\underline i}\)为有序选择\(i\)个位置
\(f_{i,n}\)\(n\)个点的有序选择\(i\)个位置的方案数,令\(g_i\)\(i\)个点的无向联通图个数
\(f_{i,n}=\sum\limits_{k=1}^n {n\choose k}g_kf_{i-1,n-k}\)

\(g_i\)可以用\(ln\)

posted @ 2020-05-14 09:39  Grice  阅读(132)  评论(0编辑  收藏  举报