bzoj4734

题意

已知\(m\)次多项式\(f(x)\)\(0,1,\cdots ,m\)处的取值分别为\(f(0),f(1),\cdots,f(m)\),给定\(n,x\),求
\(\left(\sum_{k=0}^n\binom nkf(k)x^k(1-x)^{n-k}\right)\bmod998244353\)
\(n\le 10^9,m\le 2\times 10^4\)

做法一

\(Q(f)=\left(\sum_{k=0}^n\binom nkf(k)x^k(1-x)^{n-k}\right)\)

  • \(f=x\)\(Q(f)=nx\)

证明:
\(Q(x)=\left(\sum_{k=0}^n\binom nkkx^k(1-x)^{n-k}\right)\)
\(k{n\choose k}=k\frac{n}{k}{n-1\choose k-1}=n{n-1\choose k-1}\)

  • \(f=x^2\)\(Q(f)=nx+n(n-1)x^2\)

证明:
\(k^2{n\choose k}=nk {n-1\choose k-1}=n(k-1){n-1\choose k-1}+n{n-1\choose k-1}=n(n-1){n-2\choose k-2}+n{n-1\choose k-1}\)

顺着这个做法推
\(f(x)=\sum\limits_{i=0}^m a_ix^i\),特殊的,令\(0^0=1\)
\(Ans=\sum\limits_{i=1}^m a_i\sum\limits_{j=1}^i \begin{Bmatrix}i\\j\end{Bmatrix}x_j\)
暴力插值\(O(m^2)\),常数会很大,没去写了

做法二

类似做法一
\(f=x^{\underline m}\)带进去,神奇的发现\(Q(f)=n^{\underline m}x^m\)

\(f(x)=\sum\limits_{i=0}^m a_ix^{\underline i}\),现在要考虑的就是求出\(a_i\)
\(b_i=a_i\times i!\),则\(f(x)=\sum\limits_{i=0}^m b_i{x\choose i}\)
这类表达式有神奇的性质:\(\triangle^{(k)}f(0)=c_i\)
展开后是卷积形式

做法三

与做法二的差别在于求\(a_i\)
\(\sum\limits_{i=0}^m f(i)x^i=\sum\limits_{i=0}^m a_i\sum\limits_{j=i}^m x^j j^{\underline i}\)
进一步化简
\(\sum\limits_{i=0}^m f(i)\frac{x^i}{i!}=\sum\limits_{i=0}^m a_i\sum\limits_{j=i}^m \frac{x^j}{(j-i)!}=\sum\limits_{i=0}^m a_ix_i\sum\limits_{j=0}^{\infty} \frac{x^j}{j!}=\sum\limits_{i=0}^m a_ix_ie^x\)

\((\sum\limits_{i=0}^m f(i)\frac{x^i}{i!})e^{-x}=\sum\limits_{i=0}^m a_ix_i\)

题外话

做法一大概是当年验题人的做法,被出题人点名卡掉了,不过式子挺优美的

posted @ 2020-04-27 20:09  Grice  阅读(111)  评论(0编辑  收藏  举报