Loading

传统RNN网络及其案例--人名分类

传统RNN网络及其案例--人名分类

传统的RNN模型简介

RNN

先上图

这图看起来莫名其妙,想拿着跟CNN对比着学第一眼看上去有点摸不着头脑,其实我们可以把每一个时刻的图展开来,如下

其中,为了简化计算,我们默认每一个隐层参数相同,这样看来RNN的结构就比较简单了,相比较CNN来说,RNN引入了更多的时序信息。

LSTM

在训练 RNN 时,每个时间步的输出都依赖于之前时间步的状态,这种依赖关系形成了一个链式结构。当反向传播时,梯度需要通过多个时间步传播回去,由于链式法则的存在,这个过程中梯度会多次进行乘法运算。如果这些乘法运算的结果小于1,梯度就会随着时间步的增加逐渐衰减,最终可能消失到几乎为零,就会导致梯度消失。RNN 中常用的激活函数如 Sigmoid 或者 tanh 函数,它们的输出范围都在 (0, 1) 或者 (-1, 1) 之间。在反向传播时,如果梯度在这些函数的导数范围内,则可以稳定地传播;但如果超出了这个范围,梯度可能会指数级增长或减少,导致梯度爆炸。而且这些在处理长序列时特别容易发生,因此,出现了RNN的改良版,LSTM。

先看图:

谈到LSTM就无法避免的提及它的三个门和最上面的记忆单元

  1. 记忆单元:记忆单元是LSTM的核心,用于存储信息。它可以看作是一条信息通道,贯穿整个 LSTM单元链条,允许信息直接传递,减少信息丢失。

  2. 遗忘门:遗忘门决定哪些信息需要从记忆单元中删除。它通过sigmoid函数(将当前输入和前一时刻的隐藏状态作为输入)输出一个0到1之间的值。接近0的值表示需要遗忘的信息,接近1的值表示需要保留的信息。

    \[f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \]

  3. 输入门: 输入门决定哪些新的信息需要添加到记忆单元中。它由两个部分组成:一个sigmoid层决定哪些值将被更新;一个tanh层生成新的候选值向量。

    \[i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \]

    \[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]

  4. 输出门:输出门决定记忆单元的哪些部分将被输出作为当前时刻的隐藏状态。它通过sigmoid层和tanh层来实现。

    \[o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \]

    \[h_t = o_t * \tanh(C_t) \]

LSTM的工作流程如下

  1. 遗忘阶段:计算遗忘门的值,以确定当前记忆单元状态中需要遗忘的部分。

    \[C_t = f_t * C_{t-1} \]

  2. 输入阶段:计算输入门的值,并生成新的候选记忆内容。

    \[C_t = C_t + i_t * \tilde{C}_t \]

  3. 更新记忆单元:结合遗忘门和输入门的输出,更新当前记忆单元的状态。

  4. 输出阶段:计算输出门的值,并生成新的隐藏状态。
    完整公式流程

\[f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \]

\[i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \]

\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]

\[C_t = f_t * C_{t-1} + i_t * \tilde{C}_t \]

\[o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \]

\[h_t = o_t * \tanh(C_t) \]

GRU

LSTM固然很强,解决了RNN对于长序列模型表现很拉跨的难题,但是仔细查看LSTM的过程就会发现,相对于RNN来说他引入了太多的参数,很容易就过拟合和训练时间大大加长,因此,GRU改进这一问题

  1. 更新门:更新门控制着前一时间步的信息和当前时间步的新信息之间的混合。它通过sigmoid函数决定有多少过去的信息需要保留,以及有多少新的信息需要添加。

    \[z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \]

  2. 重置门:重置门控制着前一时间步的隐藏状态在当前时间步中被遗忘的比例。它通过sigmoid函数决定有多少前一时间步的信息需要被重置。

    \[r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \]

  3. 候选隐藏状态:候选隐藏状态结合了重置门的结果,决定当前时间步的隐藏状态。

    \[\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) \]

  4. 隐藏状态:最终的隐藏状态是更新门和候选隐藏状态的组合。

    \[h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \]

工作流程如下:

  1. 重置阶段:计算重置门的值,以确定前一时间步的信息在当前时间步中被重置的比例。

    \[r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \]

  2. 更新阶段:计算更新门的值,以确定有多少信息从前一时间步保留到当前时间步。

    \[z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \]

  3. 候选隐藏状态阶段:计算候选隐藏状态,该状态结合了重置门的结果和当前输入信息。

    \[\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) \]

  4. 隐藏状态更新阶段:结合更新门和候选隐藏状态,更新当前时间步的隐藏状态。

    \[h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \]

    完整工作流程

    \[z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \]

    \[r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \]

    \[\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) \]

    \[h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \]

使用传统RNN模型来进行人名分类

1. 准备工作

  1. 要用到的数据集点此下载,备用地址,点击下载

  2. 导入一些包和写一个读取数据的函数(这段代码不是重点,直接抄就行了,只需要记住几个关键的变量)

    category_lines: 人名类别与具体人名对应关系的字典,形式为{人名类别:[人名1,人名2,...]}
    all_categories:所有的类别构成的列表
    all_letters:所有的字符
    
    import torch
    from io import open
    import glob
    import os
    import unicodedata
    import string
    import random
    import time
    import math
    import torch.nn as nn
    import matplotlib.pyplot as plt
    
    data_path = './data/names/'
    all_letters = string.ascii_letters + " .,;'"
    def unicodeToAscii(text):
        """
        Converts a Unicode string to an ASCII string.
    
        Args:
            text (str): The Unicode string to convert.
    
        Returns:
            str: The ASCII string.
        """
        return ''.join([
            unicodedata.normalize('NFKD', char)
            for char in text
            if not unicodedata.combining(char)
        ]).encode('ascii', 'ignore').decode('ascii')
    
    
    def readLines(filename):
        lines = open(filename, encoding='utf-8').read().strip().split('\n')
        return [unicodeToAscii(line) for line in lines]
    
    # 构建一个人名类别与具体人名对应关系的字典
    category_lines = {}
    
    # 构建所有类别的列表
    all_categories = []
    
    # 遍历所有的文件,使用glob.glob中可以利用正则表达式遍历
    for filename in glob.glob(data_path + '*.txt'):
        category = os.path.splitext(os.path.basename(filename))[0]
        all_categories.append(category)
        lines = readLines(filename)
        # 将类别与人名对应关系存储到字典中
        category_lines[category] = lines
    
    # 测试
    print(category_lines['Italian'][:5])
    
  3. 字符无法直接被网络识别,因此要将其编码,这里使用最简单的one-hot编码,实现一个函数lineToTensor(line),将输入的名字编码成张量

    def lineToTensor(line):
        # 首先初始化一个全0的张量,大小为len(line) * 1 * n_letters
        # 代表人名每个字母都用一个(1 * n_letters)的one-hot向量表示
        tensor = torch.zeros(len(line), 1, len(all_letters))
        # 遍历人名的每个字母, 并搜索其在所有字母中的位置,将其对应的位置置为1
        for li, letter in enumerate(line):
            tensor[li][0][all_letters.find(letter)] = 1
            
        return tensor
    # 测试
    line = "Bai"
    tensor = lineToTensor(line)
    print("line_tensor:", tensor)
    print("line_tensor_size:", tensor.size())
    

2. 模型搭建

  1. 搭建RNN模型

    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(RNN, self).__init__()
            # input_size: 输入数据的特征维度
            # hidden_size: RNN隐藏层的最后一个维度
            # output_size: RNN网络最后线性层的输出维度
            # num_layers: RNN网络的层数
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.rnn = nn.RNN(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden):
            # input: 人名分类器中的输入张量,形状是1*n_letters
            # hidden: 代表隐藏层张量,形状是self.num_layers*1*hidden_size
            # 输入到RNN中的张量要求是三维张量,所以需要用unsqueeze()函数扩充维度
            input1 = input1.unsqueeze(0)
            rr, hn = self.rnn(input1, hidden)
            # 将RNN中获得的结果通过线性层变换和softmax函数输出
            return self.softmax(self.linear(rr)), hn
        
        def initHidden(self):
            # 初始化隐藏层张量,全0张量,维度是3
            return torch.zeros(self.num_layers, 1, self.hidden_size)
    
  2. 搭建LSTM模型

    class LSTM(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(LSTM, self).__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden, c):
            # 注意:LSTM网络的输入有三个张量,不能忘记细胞状态C
            input1 = input1.unsqueeze(0)
            rr, (hn, cn) = self.lstm(input1, (hidden, c))
            return self.softmax(self.linear(rr)), hn, cn
        
        def initHiddenAndC(self):
            c = hidden = torch.zeros(self.num_layers, 1, self.hidden_size)
            return hidden, c
    
  3. 搭建GRU模型

    class GRU(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(GRU, self).__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.gru = nn.GRU(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden):
            input1 = input1.unsqueeze(0)
            rr, hn = self.gru(input1, hidden)
            return self.softmax(self.linear(rr)), hn
        
        def initHidden(self):
            return torch.zeros(self.num_layers, 1, self.hidden_size)
    

3. 模型的实例化与训练

  1. 定义一些参数以及实例化模型

    # 参数
    input_size = len(all_letters)
    n_hidden = 128
    output_size = n_categories
    input1 = lineToTensor('B').squeeze(0)
    hidden = c = torch.zeros(1, 1, n_hidden)
    
    rnn = RNN(input_size, n_hidden, output_size)
    lstm = LSTM(input_size, n_hidden, output_size)
    gru = GRU(input_size, n_hidden, output_size)
    
    # 测试
    rnn_output, rnn_hidden = rnn(input1, hidden)
    lstm_output, lstm_hidden, next_c = lstm(input1, hidden, c)
    gru_output, gru_hidden = gru(input1, hidden)
    
    # 打印输出信息
    print("rnn_output:", rnn_output)
    print("rnn_shape:", rnn_output.shape)
    print("********************************")
    print("lstm_output:", lstm_output)
    print("lstm_shape:", lstm_output.shape)
    print("********************************")
    print("gru_output:", gru_output)
    print("gru_shape:", gru_output.shape)
    
  2. categoryFromOutput(output)函数功能为从模型输出中获取最大值和最大值的索引

    def categoryFromOutput(output):
        # 从输出中获取最大值和最大值的索引
        top_n, top_i = output.topk(1)
        category_i = top_i[0].item()
        return all_categories[category_i], category_i
    
  3. randomTrainingExample()函数功能为随机选训练所需的数据

    def randomTrainingExample():
        # 随机选择一个类别
        category = random.choice(all_categories)
        # 从该类别中随机选择一个人名
        line = random.choice(category_lines[category])
        # 将人名转换为张量
        category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
        line_tensor = lineToTensor(line)
        return category, line, category_tensor, line_tensor
    
  4. 构建训练函数

    # 构建传统RNN训练函数
    criterion = nn.NLLLoss()
    learning_rate = 0.005
    def trainRNN(category_tensor, line_tensor):
        hidden = rnn.initHidden()
        rnn.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
        
        # rnn对象由nn.RNN实例化得到,最终输出得到的是三维张量,为了满足category_tensor的维度要求,需要将其转换为二维张量
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        # 更新参数
        for p in rnn.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    def trainLSTM(category_tensor, line_tensor):
        hidden, c = lstm.initHiddenAndC()
        lstm.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden, c = lstm(line_tensor[i], hidden, c)
        
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        for p in lstm.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    def trainGRU(category_tensor, line_tensor):
        hidden = gru.initHidden()
        gru.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden = gru(line_tensor[i], hidden)
        
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        for p in gru.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
  5. 绘图的辅助函数timeSince(since)用于记录代码运行时间

    # 构建时间计算函数
    def timeSince(since):
        now = time.time()
        s = now - since
        m = math.floor(s / 60)
        s -= m * 60
        return "%dm %ds" % (m, s)
    
  6. 构建完整的训练函数

    # 训练轮次
    n_iters = 1000
    # 每隔print_every打印一次信息
    print_every = 50
    # 每个plot_every作为一次绘图采样点
    plot_every = 10
    def train(train_type_fn):
        # 每个制图间隔损失保存列表
        all_losses = []
        # 获得开始的时间戳
        start = time.time()
        current_loss = 0
        for iter in range(1, n_iters + 1):
            category, line, category_tensor, line_tensor = randomTrainingExample()
            output, loss = train_type_fn(category_tensor, line_tensor)
            current_loss += loss
            if iter % print_every == 0:
                guess, guess_i = categoryFromOutput(output)
                correct = "✓" if guess == category else "✗ (%s)" % category
                print("%d %d%% (%s) %.4f %s / %s %s" % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
            if iter % plot_every == 0:
                all_losses.append(current_loss / plot_every)
                current_loss = 0
        return all_losses, int(time.time() - start)
    
  7. 训练并绘图

    # 训练并制作对比图
    all_losses1, period1 = train(trainRNN)
    all_losses2, period2 = train(trainLSTM)
    all_losses3, period3 = train(trainGRU)
    
    plt.figure(0)
    plt.plot(all_losses1, label='RNN')
    plt.plot(all_losses2, color='red', label='LSTM')
    plt.plot(all_losses3, color='green', label='GRU')
    plt.legend(loc='upper left')
    
    plt.figure(1)
    x_data = ['RNN', 'LSTM', 'GRU']
    y_data = [period1, period2, period3]
    plt.bar(range(len(x_data)), y_data, color='green', tick_label=x_data)
    
  8. 为方便测试,训练轮次只设置了一千,图形跑出来看不是很清楚,以下为训练1e5次的效果

4. 构建评估函数和预测函数

  1. 评估函数

    def evaluateRNN(line_tensor):
        output = None
        hidden = rnn.initHidden()
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
        return output.squeeze(0)
    
    def evaluateLSTM(line_tensor):
        output = None
        hidden, c = lstm.initHiddenAndC()
        for i in range(line_tensor.size()[0]):
            output, hidden, c = lstm(line_tensor[i], hidden, c)
        return output.squeeze(0)
    
    def evaluateGRU(line_tensor):
        output = None
        hidden = gru.initHidden()
        for i in range(line_tensor.size()[0]):
            output, hidden = gru(line_tensor[i], hidden)
        return output.squeeze(0)
    
  2. 预测函数

    def predict(input_line, evaluate, n_predictions=3):
        print("\n> %s" % input_line)
        with torch.no_grad():
            output = evaluate(lineToTensor(input_line))
            topv, topi = output.topk(n_predictions, 1, True)
            predictions = []
            for i in range(n_predictions):
                value = topv[0][i].item()
                category_index = topi[0][i].item()
                print("(%.2f) %s" % (value, all_categories[category_index]))
                predictions.append([value, all_categories[category_index]])
                
    # 测试
    for evaluate_fn in [evaluateRNN, evaluateLSTM, evaluateGRU]:
        predict('Dovesky', evaluate_fn)
        predict('Jackson', evaluate_fn)
        predict('Satoshi', evaluate_fn)
        
    
  3. 完整代码版(方便复制来测试)

    import torch
    from io import open
    import glob
    import os
    import unicodedata
    import string
    import random
    import time
    import math
    import torch.nn as nn
    import matplotlib.pyplot as plt
    data_path = './data/names/'
    
    
    all_letters = string.ascii_letters + " .,;'"
    def unicodeToAscii(text):
        """
        Converts a Unicode string to an ASCII string.
    
        Args:
            text (str): The Unicode string to convert.
    
        Returns:
            str: The ASCII string.
        """
        return ''.join([
            unicodedata.normalize('NFKD', char)
            for char in text
            if not unicodedata.combining(char)
        ]).encode('ascii', 'ignore').decode('ascii')
    
    
    def readLines(filename):
        lines = open(filename, encoding='utf-8').read().strip().split('\n')
        return [unicodeToAscii(line) for line in lines]
    
    # 构建一个人名类别与具体人名对应关系的字典
    category_lines = {}
    
    # 构建所有类别的列表
    all_categories = []
    
    # 遍历所有的文件,使用glob.glob中可以利用正则表达式遍历
    for filename in glob.glob(data_path + '*.txt'):
        category = os.path.splitext(os.path.basename(filename))[0]
        all_categories.append(category)
        lines = readLines(filename)
        # 将类别与人名对应关系存储到字典中
        category_lines[category] = lines
        
    n_categories = len(all_categories)
    
    
    def lineToTensor(line):
        # 首先初始化一个全0的张量,大小为len(line) * 1 * n_letters
        # 代表人名每个字母都用一个(1 * n_letters)的one-hot向量表示
        tensor = torch.zeros(len(line), 1, len(all_letters))
        # 遍历人名的每个字母, 并搜索其在所有字母中的位置,将其对应的位置置为1
        for li, letter in enumerate(line):
            tensor[li][0][all_letters.find(letter)] = 1
            
        return tensor
    
    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(RNN, self).__init__()
            # input_size: 输入数据的特征维度
            # hidden_size: RNN隐藏层的最后一个维度
            # output_size: RNN网络最后线性层的输出维度
            # num_layers: RNN网络的层数
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.rnn = nn.RNN(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden):
            # input: 人名分类器中的输入张量,形状是1*n_letters
            # hidden: 代表隐藏层张量,形状是self.num_layers*1*hidden_size
            # 输入到RNN中的张量要求是三维张量,所以需要用unsqueeze()函数扩充维度
            input1 = input1.unsqueeze(0)
            rr, hn = self.rnn(input1, hidden)
            # 将RNN中获得的结果通过线性层变换和softmax函数输出
            return self.softmax(self.linear(rr)), hn
        
        def initHidden(self):
            # 初始化隐藏层张量,全0张量,维度是3
            return torch.zeros(self.num_layers, 1, self.hidden_size)
        
        
    class LSTM(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(LSTM, self).__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden, c):
            # 注意:LSTM网络的输入有三个张量,不能忘记细胞状态C
            input1 = input1.unsqueeze(0)
            rr, (hn, cn) = self.lstm(input1, (hidden, c))
            return self.softmax(self.linear(rr)), hn, cn
        
        def initHiddenAndC(self):
            c = hidden = torch.zeros(self.num_layers, 1, self.hidden_size)
            return hidden, c
        
    class GRU(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(GRU, self).__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.gru = nn.GRU(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden):
            input1 = input1.unsqueeze(0)
            rr, hn = self.gru(input1, hidden)
            return self.softmax(self.linear(rr)), hn
        
        def initHidden(self):
            return torch.zeros(self.num_layers, 1, self.hidden_size)
        
    # 参数
    input_size = len(all_letters)
    n_hidden = 128
    output_size = n_categories
    hidden = c = torch.zeros(1, 1, n_hidden)
    
    rnn = RNN(input_size, n_hidden, output_size)
    lstm = LSTM(input_size, n_hidden, output_size)
    gru = GRU(input_size, n_hidden, output_size)
    
    def categoryFromOutput(output):
        # 从输出中获取最大值和最大值的索引
        top_n, top_i = output.topk(1)
        category_i = top_i[0].item()
        return all_categories[category_i], category_i
    
    # category, category_i = categoryFromOutput(rnn_output)
    # print("category:", category)
    # print("category_i:", category_i)
    
    def randomTrainingExample():
        # 随机选择一个类别
        category = random.choice(all_categories)
        # 从该类别中随机选择一个人名
        line = random.choice(category_lines[category])
        # 将人名转换为张量
        category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
        line_tensor = lineToTensor(line)
        return category, line, category_tensor, line_tensor
    
    
    # 构建传统RNN训练函数
    criterion = nn.NLLLoss()
    learning_rate = 0.005
    def trainRNN(category_tensor, line_tensor):
        hidden = rnn.initHidden()
        rnn.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
        
        # rnn对象由nn.RNN实例化得到,最终输出得到的是三维张量,为了满足category_tensor的维度要求,需要将其转换为二维张量
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        # 更新参数
        for p in rnn.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    def trainLSTM(category_tensor, line_tensor):
        hidden, c = lstm.initHiddenAndC()
        lstm.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden, c = lstm(line_tensor[i], hidden, c)
        
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        for p in lstm.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    def trainGRU(category_tensor, line_tensor):
        hidden = gru.initHidden()
        gru.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden = gru(line_tensor[i], hidden)
        
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        for p in gru.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    # 构建时间计算函数
    def timeSince(since):
        now = time.time()
        s = now - since
        m = math.floor(s / 60)
        s -= m * 60
        return "%dm %ds" % (m, s)
    
    
    # 完整的训练函数
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_iters = 1000
    print_every = 50
    plot_every = 10
    def train(train_type_fn):
        # 每个制图间隔损失保存列表
        all_losses = []
        # 获得开始的时间戳
        start = time.time()
        current_loss = 0
        for iter in range(1, n_iters + 1):
            category, line, category_tensor, line_tensor = randomTrainingExample()
            output, loss = train_type_fn(category_tensor, line_tensor)
            current_loss += loss
            if iter % print_every == 0:
                guess, guess_i = categoryFromOutput(output)
                correct = "✓" if guess == category else "✗ (%s)" % category
                print("%d %d%% (%s) %.4f %s / %s %s" % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
            if iter % plot_every == 0:
                all_losses.append(current_loss / plot_every)
                current_loss = 0
        return all_losses, int(time.time() - start)
    
    
    # 训练并制作对比图
    all_losses1, period1 = train(trainRNN)
    all_losses2, period2 = train(trainLSTM)
    all_losses3, period3 = train(trainGRU)
    
    plt.figure(0)
    plt.plot(all_losses1, label='RNN')
    plt.plot(all_losses2, color='red', label='LSTM')
    plt.plot(all_losses3, color='green', label='GRU')
    plt.legend(loc='upper left')
    
    plt.figure(1)
    x_data = ['RNN', 'LSTM', 'GRU']
    y_data = [period1, period2, period3]
    plt.bar(range(len(x_data)), y_data, color='green', tick_label=x_data)
    
    # 构建评估函数
    def evaluateRNN(line_tensor):
        output = None
        hidden = rnn.initHidden()
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
        return output.squeeze(0)
    
    def evaluateLSTM(line_tensor):
        output = None
        hidden, c = lstm.initHiddenAndC()
        for i in range(line_tensor.size()[0]):
            output, hidden, c = lstm(line_tensor[i], hidden, c)
        return output.squeeze(0)
    
    def evaluateGRU(line_tensor):
        output = None
        hidden = gru.initHidden()
        for i in range(line_tensor.size()[0]):
            output, hidden = gru(line_tensor[i], hidden)
        return output.squeeze(0)
    
    # 构建预测函数
    def predict(input_line, evaluate, n_predictions=3):
        print("\n> %s" % input_line)
        with torch.no_grad():
            output = evaluate(lineToTensor(input_line))
            topv, topi = output.topk(n_predictions, 1, True)
            predictions = []
            for i in range(n_predictions):
                value = topv[0][i].item()
                category_index = topi[0][i].item()
                print("(%.2f) %s" % (value, all_categories[category_index]))
                predictions.append([value, all_categories[category_index]])
                
    # 调用试试
    for evaluate_fn in [evaluateRNN, evaluateLSTM, evaluateGRU]:
        predict('Dovesky', evaluate_fn)
        predict('Jackson', evaluate_fn)
        predict('Satoshi', evaluate_fn)
        
    
posted @ 2024-05-22 20:48  [X_O]  阅读(72)  评论(0编辑  收藏  举报