题目大意:求一个 有标号树的 本质不同的 有根点分树 数量。要求平方。

思考:咕咕咕

 1 #include<bits/stdc++.h>
 2 #define mod 1000000007
 3 using namespace std;
 4 typedef long long int ll;
 5 const int maxn=5E3+5;
 6 int n;
 7 int size,head[maxn];
 8 ll f[maxn][maxn],C[maxn][maxn];
 9 struct edge
10 {
11     int to,next;
12 }E[maxn*2];
13 inline void add(int u,int v)
14 {
15     E[++size].to=v;
16     E[size].next=head[u];
17     head[u]=size;
18 }
19 ll tmp[maxn];
20 int sum[maxn];
21 void dfs(int u,int F)
22 {
23     f[u][0]=1;
24     for(int e=head[u];e;e=E[e].next)
25     {
26         int v=E[e].to;
27         if(v==F)
28             continue;
29         dfs(v,u);
30         for(int i=0;i<=sum[u]+sum[v];++i)
31             tmp[i]=0;
32         for(int i=0;i<=sum[u];++i)
33             for(int j=0;j<=sum[v];++j)
34                 tmp[i+j]=(tmp[i+j]+f[u][i]*f[v][j]%mod*C[i+j][i])%mod;
35         sum[u]+=sum[v];
36         for(int i=0;i<=sum[u];++i)
37             f[u][i]=tmp[i];
38     }
39     memset(tmp,0,sizeof(tmp));
40     ++sum[u];
41     for(int i=1;i<=sum[u];++i)
42         tmp[i]=f[u][i-1];
43     for(int i=sum[u];i>=0;--i)
44         f[u][i]=(f[u][i+1]+tmp[i])%mod;
45 }
46 int main()
47 {
48     freopen("game.in","r",stdin);
49     freopen("game.out","w",stdout);
50     ios::sync_with_stdio(false);
51     cin>>n;
52     for(int i=2;i<=n;++i)
53     {
54         int x,y;
55         cin>>x>>y;
56         assert(x!=y);
57         add(x,y);
58         add(y,x);
59     }
60     for(int i=0;i<=n;++i)
61     {
62         C[i][0]=1;
63         for(int j=1;j<=i;++j)
64             C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
65     }
66     dfs(1,0);
67     cout<<f[1][0]<<endl;
68     return 0;
69 }
View Code

 


 

题目链接:https://www.luogu.com.cn/problem/P1393

题解:https://mivik.gitee.io/2020/solution/mivik-string-contest-title/

  1 #include<bits/stdc++.h>
  2 #define mod 998244353
  3 #define G 3
  4 #define Gi 332748118
  5 using namespace std;
  6 typedef long long int ll;
  7 const int maxn=1E5+5;
  8 ll n,m,k;
  9 int a[maxn];
 10 inline ll qpow(ll x,ll y)
 11 {
 12     ll ans=1,base=x;
 13     while(y)
 14     {
 15         if(y&1)
 16             ans=ans*base%mod;
 17         base=base*base%mod;
 18         y>>=1;
 19     }
 20     return ans;
 21 }
 22 int fail[maxn];
 23 namespace POLY
 24 {
 25     vector<ll>pre[20],prei[20];
 26     inline void init()
 27     {
 28         for(int i=1;i<20;++i)
 29         {
 30             ll d=qpow(G,(mod-1)/(1<<i));
 31             for(ll j=0,w=1;j<(1<<i);++j,w=w*d%mod)
 32                 pre[i].push_back(w);
 33             d=qpow(Gi,(mod-1)/(1<<i));
 34             for(ll j=0,w=1;j<(1<<i);++j,w=w*d%mod)
 35                 prei[i].push_back(w);
 36         }
 37     }
 38     int r[(1<<20)+5];
 39     inline void DFT(ll*A,int limit)
 40     {
 41         for(int i=1;i<limit;++i)
 42             if(i<r[i])
 43                 swap(A[i],A[r[i]]);
 44         for(int len=2,now=1;len<=limit;len<<=1,++now)
 45             for(int i=0;i<limit;i+=len)
 46                 for(int j=0,p1=i,p2=i+len/2;j<len/2;++j,++p1,++p2)
 47                 {
 48                     ll a=A[p1],b=A[p2]*pre[now][j]%mod;
 49                     A[p1]=a+b>=mod?a+b-mod:a+b;
 50                     A[p2]=a-b<0?a-b+mod:a-b;
 51                 }
 52     }
 53     inline void IDFT(ll*A,int limit)
 54     {
 55         for(int i=1;i<limit;++i)
 56             if(i<r[i])
 57                 swap(A[i],A[r[i]]);
 58         for(int len=2,now=1;len<=limit;len<<=1,++now)
 59             for(int i=0;i<limit;i+=len)
 60                 for(int j=0,p1=i,p2=i+len/2;j<len/2;++j,++p1,++p2)
 61                 {
 62                     ll a=A[p1],b=A[p2]*prei[now][j]%mod;
 63                     A[p1]=a+b>=mod?a+b-mod:a+b;
 64                     A[p2]=a-b<0?a-b+mod:a-b;
 65                 }
 66     }
 67     ll tmp1[(1<<20)+5],tmp2[(1<<20)+5];
 68     inline void FFT(ll*A,ll*B,int n1,int n2,ll*to)
 69     {
 70         int limit=1;
 71         while(limit<n1+n2+1)
 72             limit<<=1;
 73         for(int i=0;i<limit;++i)
 74             tmp1[i]=tmp2[i]=0;
 75         for(int i=0;i<=n1;++i)
 76             tmp1[i]=A[i];
 77         for(int i=0;i<=n2;++i)
 78             tmp2[i]=B[i];
 79         for(int i=0;i<limit;++i)
 80             r[i]=(r[i>>1]>>1)|((i&1)?(limit>>1):0);
 81         DFT(tmp1,limit);
 82         DFT(tmp2,limit);
 83         for(int i=0;i<limit;++i)
 84             tmp1[i]=tmp1[i]*tmp2[i]%mod;
 85         IDFT(tmp1,limit);
 86         ll base=qpow(limit,mod-2);
 87         for(int i=0;i<=n1+n2;++i)
 88             to[i]=tmp1[i]*base%mod;
 89     }
 90     ll tmp3[(1<<20)+5],tmp4[(1<<20)+5],tmp5[(1<<20)+5];
 91     inline void inv(ll*A,int n)
 92     {
 93         tmp3[0]=qpow(A[0],mod-2);
 94         for(int now=1;now<n+1;now<<=1)
 95         {
 96             int limit=now<<2;
 97             for(int i=0;i<limit;++i)
 98                 tmp4[i]=tmp5[i]=0;
 99             for(int i=0;i<now;++i)
100                 tmp4[i]=tmp3[i];
101             for(int i=0;i<(now<<1);++i)
102                 tmp5[i]=A[i];
103             for(int i=0;i<limit;++i)
104                 r[i]=(r[i>>1]>>1)|((i&1)?(limit>>1):0);
105             DFT(tmp4,limit);
106             DFT(tmp5,limit);
107             for(int i=0;i<limit;++i)
108                 tmp3[i]=((-tmp4[i]*tmp4[i]%mod*tmp5[i]%mod+tmp4[i]*2)%mod+mod)%mod;
109             IDFT(tmp3,limit);
110             ll base=qpow(limit,mod-2);
111             for(int i=0;i<(now<<1);++i)
112                 tmp3[i]=tmp3[i]*base%mod;
113         }
114         for(int i=0;i<=n;++i)
115             A[i]=tmp3[i];
116     }
117 }
118 ll C[maxn];
119 inline void solve()
120 {
121     int pos=0;
122     for(int i=2;i<=k;++i)
123     {
124         while(pos&&a[i]!=a[pos+1])
125             pos=fail[pos];
126         if(a[i]==a[pos+1])
127             ++pos;
128         fail[i]=pos;
129     }
130     for(int p=k;p;p=fail[p])
131         C[k-p]=1;
132     for(int i=n;i>=1;--i)
133         C[i]=(C[i]-C[i-1]*m%mod+mod)%mod;
134     ++C[k];
135     POLY::inv(C,n);
136     for(int i=n;i>=k;--i)
137         C[i]=C[i-k];
138     ll ans=0;
139     for(int i=k;i<=n;++i)
140         ans=(ans+C[i]*qpow(m,n-i))%mod;
141     ans=(ans%mod+mod)%mod;
142     ans=ans*qpow(qpow(m,n),mod-2)%mod;
143     cout<<ans<<endl;
144 }
145 inline int read()
146 {
147     char ch=getchar();
148     while(!isdigit(ch))ch=getchar();
149     int s=ch-'0';ch=getchar();
150     while(isdigit(ch)){s=s*10+ch-'0';ch=getchar();}
151     return s;
152 }
153 int main()
154 {
155     freopen("bye.in","r",stdin);
156     freopen("bye.out","w",stdout);
157     ios::sync_with_stdio(false);
158     POLY::init();
159     n=read(),m=read(),k=read();
160     for(int i=1;i<=k;++i)
161         a[i]=read();
162     solve();
163     return 0;
164 }
View Code

 

 posted on 2021-03-25 15:23  GreenDuck  阅读(69)  评论(0编辑  收藏  举报