DQN vs. DDQN
在传统的DQN(Deep Q-Learning Network)和DDQN(Double Deep Q-Learning Network)之间,主要区别如下:
1. Q值估计的目标函数不同:
-
DQN: 在DQN中,目标Q值是通过最大化Q值的动作直接由同一个网络(目标网络)计算得到的。这可能会导致Q值过高估计(overestimation)的现象。
\( Y^{DQN} = r + \gamma \max_a Q(s_{t+1}, a; \theta^-) \)
这里,\(\theta^-\) 是目标网络的参数。 -
DDQN: 在DDQN中,目标Q值的动作选择和Q值估计分开使用两个网络完成。具体地,它使用当前网络(在线网络)选择动作,然后使用目标网络评估该动作的Q值,从而减少了Q值过高估计的可能性。
\( Y^{DoubleQ} = r + \gamma Q(s_{t+1}, \arg\max_a Q(s_{t+1}, a; \theta); \theta^-) \)
这里,动作的选择由当前网络的参数 \(\theta\) 决定,而Q值的评估则由目标网络的参数 \(\theta^-\) 决定。
2. 引入了分离的动作选择和Q值更新:
- DQN在更新Q值时直接依赖于目标网络的最大Q值输出,而DDQN通过分离动作选择和目标Q值计算,降低了估值的不稳定性和偏差。
- DDQN的这种方法可以更稳定地收敛,同时避免因过高估计导致的策略错误。
3. 稳定性和性能改进:
- DQN可能因过高估计导致策略不稳定,特别是在训练过程中容易出现“抖动”现象。
- DDQN通过分离动作选择和Q值估计,引入更精确的目标,增强了训练的稳定性和最终性能。
总结
- DQN 采用的是单一网络进行动作选择和目标计算,因此可能会导致Q值过高估计。
- DDQN 通过分离动作选择和目标计算,降低了Q值过高估计的问题,从而提升了算法的稳定性和准确性。
希望这个解释能够清晰地帮助你理解DQN和DDQN的主要区别!
a prompt for change
Let me analyze the RL components in this code and provide guidance on implementing DDQN.
Key Points from Current Implementation:
- The code uses a ComponentSelector for selecting which neural network components to train in each round using DQN
- Components that can be selected include: transformer, node embedding, confidence encoders, VAE parts, and output projection
- The current state representation includes client loss history
- Reward calculation considers both global loss improvements and individual client improvements
- Uses an epsilon-greedy exploration strategy with decay
To modify this to use DDQN, here are the key changes needed:
- Network Architecture:
- Keep two networks: main network and target network
- Both networks should have identical architecture but separate parameters
- Target network parameters should be updated periodically (soft or hard updates)
- Action Selection:
- Use main network for selecting actions (argmax Q-values)
- Use target network for evaluating those actions (computing target Q-values)
- Loss Calculation:
- Current Q-value: Q(s,a) from main network
- Next action selection: argmax Q(s',a') from main network
- Target Q-value: Q(s',argmax Q(s',a')) from target network
- TD error: r + γQ_target(s',argmax Q(s',a')) - Q(s,a)
Here's a suggested prompt for implementing these changes:
I need help modifying the RL component selection in a federated learning system. The system should:
1. Use Double DQN for component selection with:
- Main network for action selection
- Target network for value estimation
- Periodic target network updates (every N steps)
- Experience replay buffer of size K
2. State representation should include:
- Historical loss values for each client
- Current component activation states
- Client performance metrics
- Global model performance metrics
3. Action space:
- Binary vector indicating which components to activate/freeze
- Length equal to number of neural network components
4. Reward function considering:
- Improvement in global model performance
- Individual client improvements
- Training efficiency (speed vs performance tradeoff)
- Component sparsity bonus
5. Training process:
- Epsilon-greedy exploration with decay
- Minibatch updates from replay buffer
- Separate target network updates
- Early stopping based on performance plateau
Please provide the core logic for implementing this DDQN-based component selection system.
This prompt would help get an implementation that:
- Better stabilizes learning through the target network
- Reduces overestimation bias common in standard DQN
- Maintains exploration-exploitation balance
- Considers both global and local performance metrics
Would you like me to elaborate on any of these aspects or provide more specific implementation details?
对 RL + aggregate的修改 (选择哪些模块)
Looking at the Model class structure, let me clarify how the RL component selection and aggregation work:
- Current Selection Scope:
- The RL agent only selects components within the VAE (encoder, decoder, sd_decoder)
- Other components like confidence module, road_embedding, projection_head, and SPGNN are not part of the selection process
- Aggregation Scope:
Currently, these components participate in aggregation:
- VAE components (if selected by RL):
- encoder
- decoder
- sd_decoder
- projection_head
- sd_projection_head
- gnn
Do NOT aggregate:
- road_embedding (client-specific)
- confidence module
To expand the RL selection to the full model, we could modify it like this:
class Model(nn.Module):
def __init__(self, input_size, hidden_size, device, layer_rnn, label_num, edge_num) -> None:
super().__init__()
# Group all trainable components
self.components = nn.ModuleDict({
'confidence': Confidence(label_num, input_size),
'vae': VAE(input_size, hidden_size, layer_rnn, hidden_size, 0, label_num),
'projection_head': self.create_projection_head(hidden_size, label_num),
'gnn': SPGNN(edge_num, hidden_size, label_num)
})
# Non-aggregatable components
self.road_embedding = nn.Embedding(self.label_num, input_size)
# Track component activation
self.active_components = {name: True for name in self.components.keys()}
def set_active_components(self, component_mask):
"""Extended component selection"""
component_map = {
0: 'confidence',
1: 'vae.encoder',
2: 'vae.decoder',
3: 'vae.sd_decoder',
4: 'projection_head',
5: 'gnn'
}
for idx, component_path in component_map.items():
if '.' in component_path: # Handle nested components (VAE)
module_name, component_name = component_path.split('.')
component = getattr(self.components[module_name], component_name)
else:
component = self.components[component_path]
for param in component.parameters():
param.requires_grad = bool(component_mask[idx])
if not param.requires_grad and param.grad is not None:
param.grad.zero_()
And modify the aggregation function:
def aggregate_models(clients, weights):
"""Aggregate model parameters using weighted average"""
global_state = {}
reference_model = clients[0].model.state_dict()
# Define non-aggregatable components
skip_components = [
'road_embedding',
'confidence.pos_encoder'
]
# Initialize global state with zeros
for key in reference_model:
if not any(x in key for x in skip_components):
global_state[key] = torch.zeros_like(reference_model[key])
# Weighted sum of parameters
for client, weight in zip(clients, weights):
client_state = client.model.state_dict()
for key in global_state:
if key in client_state:
global_state[key] += client_state[key] * weight
return global_state
This way:
- RL agent can select ALL major components of the model
- Aggregation properly handles both selected and non-selected components
- Client-specific components are preserved
- Component selection affects both training and aggregation
Would you like me to explain any part in more detail or help modify other aspects of the implementation?
目前RL + 课程学习的setting
Let me break down these components:
- RL State Space:
def get_state(self, client_losses):
# State dimension = num_clients * 4
# Each client contributes its last 4 loss values
state = []
for client in range(len(client_losses)):
if client_losses[client]['total']:
recent_losses = client_losses[client]['total'][-4:] # Last 4 losses
state.extend(recent_losses)
else:
state.extend([0.0] * 4)
return torch.tensor(state, device=self.device).float()
For example, with 5 clients, state dimension = 5 * 4 = 20
- Reward Calculation:
def calculate_reward(client_improvements):
# Normalize improvements to prevent extreme values
improvements = torch.tensor(client_improvements)
normalized_improvements = torch.tanh(improvements) # Squash to [-1, 1]
# Reward components:
# - mean_improvement: average performance gain across clients
# - min_improvement: worst-case performance to ensure no client is left behind
mean_improvement = normalized_improvements.mean()
min_improvement = normalized_improvements.min()
# Combined reward: 70% average improvement + 30% worst case
reward = 0.7 * mean_improvement + 0.3 * min_improvement
return reward.item()
- CurriculumAggregator:
class CurriculumAggregator:
def __init__(self, num_clients):
# Initialize equal weights for all clients
self.num_clients = num_clients
self.difficulty_scores = torch.ones(num_clients) / num_clients
def update_difficulty(self, client_metrics):
# Calculate difficulty scores based on client performance
# Lower loss = higher performance = lower difficulty
performance_scores = torch.tensor([
metrics['total'][-1] if metrics['total'] else float('inf')
for metrics in client_metrics
])
# Convert scores to weights (higher loss = higher weight)
normalized_scores = F.softmax(-performance_scores, dim=0)
# Smooth update: 90% old scores + 10% new scores
self.difficulty_scores = 0.9 * self.difficulty_scores + 0.1 * normalized_scores
def get_aggregation_weights(self, clients_perf):
# Combine difficulty scores with recent improvements
weights = self.difficulty_scores * torch.tensor(clients_perf)
return F.softmax(weights, dim=0) # Normalize to sum to 1
Key Points:
- State:
- Takes last 4 losses from each client
- Dimension = num_clients * 4
- Represents recent training history
- Reward:
- Based on improvement in losses
- Balances average and worst-case performance
- Normalized to [-1, 1] range
- Curriculum Aggregation:
- Tracks difficulty scores per client
- Updates smoothly (90/10 split)
- Combines difficulty with performance for aggregation weights
The interaction works like this:
- RL agent observes state (loss history)
- Selects components to activate
- Clients train with selected components
- Reward based on improvements
- Curriculum updates based on performance
- Aggregation weights combine curriculum and performance
Would you like me to elaborate on any of these aspects?
课程学习的修改
改进后的代码对联邦学习(Federated Learning)中的模型聚合过程进行了优化,结合课程学习(Curriculum Learning)机制,通过客户端的性能(performance)和异质性(heterogeneity)评分动态调整聚合权重,从而使聚合更加智能化和适应性强。
以下是详细的解读和总结:
核心思想
-
动态聚合权重计算:
- 综合客户端的性能评分(performance scores)和异质性评分(heterogeneity scores),动态生成聚合权重。
- 通过平滑机制(历史与当前权重平衡),确保权重的稳定性,避免剧烈波动。
- 将聚合权重用于模型参数加权平均,以提升全局模型性能。
-
关键改进点:
- 引入了异质性评分,用以衡量客户端数据的分布差异性。
- 性能评分的权重与异质性评分的权重可调节,通过参数 α 控制。
- 平滑更新课程难度评分,确保训练过程稳定。
代码的功能解析
1. 课程学习权重计算
calculate_weights
方法实现了基于性能评分和异质性评分的动态聚合权重计算,核心逻辑如下:
-
归一化评分:
- 对性能评分(performance scores)进行归一化,较低的损失对应较高的权重(使用
-perf_tensor
的 softmax 计算实现)。 - 对异质性评分(heterogeneity scores)进行归一化,异质性越高,权重越大。
- 分别计算归一化后的性能权重和异质性权重。
- 对性能评分(performance scores)进行归一化,较低的损失对应较高的权重(使用
-
组合当前评分:
- 使用参数 α 平衡异质性评分和性能评分,公式如下:\[\text{current\_weights} = \alpha \cdot \text{norm\_het} + (1 - \alpha) \cdot \text{norm\_perf} \]
- 使用参数 α 平衡异质性评分和性能评分,公式如下:
-
平滑更新历史评分:
- 结合当前权重和历史评分,使用参数 β 平滑更新课程学习的难度评分:\[\text{difficulty\_scores} = \beta \cdot \text{difficulty\_scores} + (1 - \beta) \cdot \text{current\_weights} \]
- 这样可以避免当前客户端性能剧烈变化带来的权重抖动。
- 结合当前权重和历史评分,使用参数 β 平滑更新课程学习的难度评分:
-
归一化输出权重:
- 最终,将更新后的权重进行 softmax 归一化,确保权重总和为 1:\[\text{final\_weights} = \text{softmax}(\text{difficulty\_scores}) \]
- 最终,将更新后的权重进行 softmax 归一化,确保权重总和为 1:
2. 模型参数加权聚合
average_models
方法根据计算出的聚合权重对客户端模型进行参数聚合,核心流程如下:
-
计算客户端的异质性评分:
- 使用
calculate_heterogeneity
方法,基于客户端的嵌入向量(node embeddings)计算异质性评分,异质性越高表示客户端数据分布与其他客户端越不同。
- 使用
-
计算客户端的性能评分:
- 使用最近的损失值(loss)作为性能评分,损失越低表示性能越好。
-
获取聚合权重:
- 调用
calculate_weights
方法,结合性能评分和异质性评分计算聚合权重。
- 调用
-
参数加权聚合:
- 遍历模型参数(如权重、偏置等),根据聚合权重对每个客户端模型的参数进行加权求和。
- 跳过某些无需聚合的参数(如 BN 层的统计值
running_
和num_batches_tracked
)。
-
生成全局模型:
- 聚合后的参数构成全局模型,用于下一轮训练。
公式总结
-
异质性和性能评分的归一化:
- 性能评分(较低的损失对应较高权重):\[\text{norm\_perf}_i = \text{softmax}(-\text{performance\_scores}_i) \]
- 异质性评分(较高的异质性对应较高权重):\[\text{norm\_het}_i = \text{softmax}(\text{heterogeneity\_scores}_i) \]
- 性能评分(较低的损失对应较高权重):
-
聚合权重的组合:
\[\text{current\_weights}_i = \alpha \cdot \text{norm\_het}_i + (1 - \alpha) \cdot \text{norm\_perf}_i \] -
平滑更新课程难度评分:
\[\text{difficulty\_scores}_i = \beta \cdot \text{difficulty\_scores}_i + (1 - \beta) \cdot \text{current\_weights}_i \] -
最终聚合权重:
\[\text{final\_weights}_i = \text{softmax}(\text{difficulty\_scores}_i) \] -
模型参数聚合:
\[\text{Aggregated\_Param}_k = \sum_{i=1}^{N} \text{final\_weights}_i \cdot \text{Model}_i[k] \]
改进的优点
-
动态适应性:
- 通过异质性评分考虑了客户端数据分布的多样性。
- 动态调整性能和异质性评分的权重,适应不同训练阶段的需求。
-
平滑稳定性:
- 平滑机制通过历史和当前评分的平衡,避免权重剧烈变化,确保训练过程稳定。
-
增强的公平性:
- 异质性评分对低资源或高异质性客户端给予更多关注,改善了联邦学习中的公平性问题。
-
可调节性:
- 参数 α 和 β 提供了灵活性,用户可以根据具体场景调节异质性与性能、历史与当前权重的平衡。
总结
改进后的方法在联邦学习中引入课程学习机制,通过动态权重计算和异质性评分的引入,提升了聚合过程的公平性、适应性和稳定性。这种设计在非IID数据分布场景中能够更好地平衡全局模型性能和个体客户端的贡献。
RL的设置
这个奖励函数的设计目的是平衡全局性能提升(平均改进)和个体最差性能(最小改进),确保在训练过程中既能提升整体性能,也不会让某些客户端“掉队”。以下是奖励计算的具体解析:
奖励函数的输入
函数的输入是一个列表,表示各个客户端的性能改进(client_improvements
)。
- 性能改进:一般指的是每个客户端在当前一轮训练后的损失改进情况,例如
前一轮损失 - 当前损失
。性能改进越大,表示当前一轮训练效果越好。
奖励函数计算的步骤
1. 标准化性能改进
normalized_improvements = torch.tanh(improvements) # Squash to [-1, 1]
- 使用
torch.tanh
对性能改进值进行标准化,映射到 \([-1, 1]\) 范围:- 性能改进为正值(loss 减少):对应的标准化值为正,越大越接近 1。
- 性能改进为负值(loss 增加):对应的标准化值为负,越小越接近 -1。
- 这种方式能够防止性能改进值过大(如数值爆炸)对奖励值的影响,并将值归一化。
2. 计算奖励组件
奖励值由两个部分组成:平均改进(mean_improvement)和最小改进(min_improvement)。
(1) 平均改进
mean_improvement = normalized_improvements.mean()
- 计算所有客户端的平均性能改进,表示训练的全局性能提升。
- 这一部分奖励衡量了联邦学习中整体模型的改进情况,确保全局性能提升。
(2) 最小改进
min_improvement = normalized_improvements.min()
- 计算客户端中最差的性能改进,表示训练的最差性能改进。
- 这一部分奖励用于关注“掉队的客户端”,避免模型只优化某些客户端而忽视其他性能较差的客户端,确保模型公平性。
3. 综合奖励值
reward = 0.7 * mean_improvement + 0.3 * min_improvement
- 奖励值由两部分加权组合:
- 70% 平均改进(mean_improvement):保证整体性能的优化。
- 30% 最小改进(min_improvement):保证最差客户端的性能不被忽视。
- 这种权重分配的逻辑是更关注整体性能的提升,同时适度平衡个体公平性。
奖励函数输出
return reward.item()
- 返回最终奖励值,用于强化学习算法更新策略(如策略梯度或 Q 值更新)。
核心逻辑总结
- 输入:
- 输入是每个客户端的性能改进值列表。
- 计算过程:
- 将性能改进标准化到 \([-1, 1]\)。
- 计算平均改进(global improvement)和最小改进(worst-case improvement)。
- 加权组合平均改进和最小改进,得到综合奖励值。
- 输出:
- 综合奖励值,作为强化学习的目标反馈,用于引导联邦学习中的训练策略。
奖励设计的意义
- 全局性能提升:
- 平均改进反映了所有客户端整体的训练效果,确保联邦学习模型逐步优化。
- 个体公平性:
- 最小改进关注性能最差的客户端,防止模型训练过程中过于偏向某些客户端。
- 动态平衡:
- 通过 70% 和 30% 的权重分配,动态平衡全局性能和个体公平性。
例子
假设有 3 个客户端,其性能改进分别为:
- 客户端 A:+0.5
- 客户端 B:+0.2
- 客户端 C:-0.1
Step 1: 标准化性能改进
Step 2: 计算平均和最小改进
- 平均改进:
- 最小改进:
Step 3: 计算最终奖励
最终的奖励值为 0.13062,用于引导强化学习策略。
总结
这个奖励函数通过结合平均改进和最小改进,使联邦学习的强化学习策略能够在保证全局性能提升的同时,兼顾个体客户端的公平性,避免性能过于倾向某些客户端。
改进RL的计算
Yes, you're right. Let's modify the ComponentSelector to include more historical information and component selection history. Here's the enhanced version:
class ComponentSelector(nn.Module):
def __init__(self, num_clients, hidden_size=128, device='cuda'):
super().__init__()
self.device = device
self.components = [
'encoder', # BiGRU encoder
'decoder', # Cross-attention decoder
'sd_decoder' # Side task decoder
]
# Track component selection history
self.component_history = deque(maxlen=4) # Last 4 selections
self.selection_stats = {comp: 0 for comp in self.components} # Track selection frequency
# Enhanced state representation
state_size = (num_clients * 4) + (len(self.components) * 4) + len(self.components)
# Main and target networks with larger state input
self.main_net = nn.Sequential(
nn.Linear(state_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_size, hidden_size // 2),
nn.ReLU(),
nn.Linear(hidden_size // 2, len(self.components))
).to(device)
self.target_net = copy.deepcopy(self.main_net)
# RL parameters
self.memory = deque(maxlen=10000)
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.batch_size = 32
self.optimizer = Adam(self.main_net.parameters())
# For target network updates
self.target_update_freq = 10
self.steps = 0
def get_state(self, client_losses):
state = []
# 1. Client loss history (num_clients * 4 values)
for client in range(len(client_losses)):
if client_losses[client]['total']:
recent_losses = client_losses[client]['total'][-4:]
state.extend(recent_losses)
else:
state.extend([0.0] * 4)
# 2. Component selection history (num_components * 4 values)
component_states = [[0.0] * len(self.components)] * 4
for i, hist in enumerate(self.component_history):
if i < len(component_states):
component_states[i] = hist
for comp_state in component_states:
state.extend(comp_state)
# 3. Component selection statistics (num_components values)
total_selections = sum(self.selection_stats.values()) + 1e-10
selection_freqs = [self.selection_stats[comp] / total_selections
for comp in self.components]
state.extend(selection_freqs)
return torch.tensor(state, device=self.device).float()
def select_action(self, state):
if random.random() < self.epsilon:
action = torch.bernoulli(torch.ones(len(self.components)) * 0.5).to(self.device)
else:
with torch.no_grad():
q_values = self.main_net(state)
action = (q_values > 0).float()
# Update selection statistics
for i, comp in enumerate(self.components):
if action[i] > 0:
self.selection_stats[comp] += 1
# Update history
self.component_history.append(action.cpu().tolist())
return action
def update_memory(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def optimize(self):
if len(self.memory) < self.batch_size:
return
batch = random.sample(self.memory, self.batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
states = torch.stack(states)
actions = torch.stack(actions)
rewards = torch.tensor(rewards, device=self.device)
next_states = torch.stack(next_states)
dones = torch.tensor(dones, device=self.device)
# Get next action using main network (DDQN)
next_actions = (self.main_net(next_states) > 0).float()
# Get next Q-values using target network
next_q_values = self.target_net(next_states)
next_q_values = next_q_values.gather(1, next_actions.long())
# Calculate target Q-values
target_q_values = rewards + (1 - dones) * self.gamma * next_q_values
# Calculate current Q-values
current_q_values = self.main_net(states).gather(1, actions.long())
# Calculate loss and update
loss = F.mse_loss(current_q_values, target_q_values.detach())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# Update target network periodically
self.steps += 1
if self.steps % self.target_update_freq == 0:
self.target_net.load_state_dict(self.main_net.state_dict())
# Update epsilon
self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
Key improvements:
-
Enhanced State Representation:
- Client loss history (original)
- Component selection history (last 4 selections)
- Component selection statistics (frequency of each component being selected)
-
Deeper Network Architecture:
- Added an intermediate layer
- Added dropout for better generalization
- Increased state input size to accommodate history
-
Component History Tracking:
- Added deque to track recent selections
- Added statistics tracking for component usage
- Normalizes selection frequencies
-
Better Target Network Update:
- Periodic target network updates
- Step counter for tracking updates
This enhanced version should:
- Make better decisions based on historical context
- Learn long-term patterns in component effectiveness
- Balance exploration and exploitation better
- Provide more stable learning
Would you like me to explain any part in more detail?