关于怎么聚合

Based on the code shown, I'll explain the transformer aggregation strategy and what components should be aggregated in a federated learning setting.

In the current FederatedTransformerModel, these components should be aggregated:

  1. Transformer Core Components:
  • Node embeddings (node_embedding.weight)
  • Positional encoding parameters
  • Transformer encoder/decoder layers:
    • Self-attention weights (Q, K, V matrices)
    • Feed-forward network weights
    • Layer normalization parameters (gamma, beta)
  1. Additional Neural Networks:
  • Confidence module parameters:
    - confidence_encoder layers
    - confidence_mu layer
    - confidence_logvar layer
    
  1. VAE Components:
- encoder_mu layer
- encoder_logvar layer
- decoder layer
  1. Output Projection:
- output_projection layer

Components that should NOT be aggregated:

  1. Batch normalization statistics:
  • running_mean
  • running_var
  • num_batches_tracked
  1. Temporary buffers
  2. Non-trainable parameters

Let me modify the aggregation code to be more explicit:

def get_aggregation_weights(self):
    """Return weights that should be included in federated aggregation"""
    aggregation_state = {}
    transformer_state = self.transformer_model.state_dict()
    
    # Define components to aggregate
    aggregatable_components = [
        # Core transformer
        'node_embedding.weight',
        'transformer.encoder.layers',
        'transformer.decoder.layers',
        
        # Confidence module
        'confidence_encoder',
        'confidence_mu',
        'confidence_logvar',
        
        # VAE components
        'encoder_mu',
        'encoder_logvar',
        'decoder',
        
        # Output projection
        'output_projection'
    ]
    
    # Filter components
    for key, value in transformer_state.items():
        should_aggregate = any(component in key for component in aggregatable_components)
        is_bn_stat = any(x in key for x in ['running_mean', 'running_var', 'num_batches_tracked'])
        
        if should_aggregate and not is_bn_stat:
            aggregation_state[key] = value
            
    return aggregation_state

And in the FederatedTrainer, we should modify the average_models function to respect this:

def average_models(self, models):
    """Average the weights of multiple transformer models"""
    aggregated_state = {}
    
    # Get aggregatable weights from first model
    reference_weights = models[0].get_aggregation_weights()
    
    for key in reference_weights.keys():
        # Initialize with zeros of correct shape
        aggregated_state[key] = torch.zeros_like(reference_weights[key])
        
        # Sum weights across all models
        for model in models:
            model_weights = model.get_aggregation_weights()
            aggregated_state[key] += model_weights[key]
        
        # Average the weights
        aggregated_state[key] = torch.div(aggregated_state[key], len(models))
    
    return aggregated_state

This approach:

  1. Only aggregates trainable parameters of the transformer and associated networks
  2. Preserves local batch normalization statistics
  3. Explicitly defines which components should be aggregated
  4. Maintains model stability during federation

The aggregation happens every round (as shown in your training loop) and the weights are distributed back to all clients, while letting each client maintain their own batch statistics.

Ah, I understand now. Let me explain what components get aggregated in our transformer model:

The components in get_aggregatable_parameters follow the exact architecture of our TransformerTrajectoryModel:

  1. Core Components:
  • node_embedding: Embedding layer for converting node IDs to vectors
  • transformer: The main transformer architecture with encoder and decoder
  1. Confidence Components:
  • confidence_encoder: Two linear layers with ReLU for encoding confidence
  • confidence_mu: Linear layer for confidence mean
  • confidence_logvar: Linear layer for confidence log variance
  1. VAE Components:
  • encoder_mu: Linear layer for VAE mean
  • encoder_logvar: Linear layer for VAE log variance
  • decoder: Linear layer for decoding
  1. Output Component:
  • output_projection: Final linear layer projecting to vocabulary size

This sequence matches the model's forward pass flow:

  1. Input → node_embedding
  2. Embedded sequence → transformer
  3. Transformer output → confidence modules (confidence_encoder → confidence_mu/logvar)
  4. Transformer output → VAE modules (encoder_mu/logvar → decoder)
  5. Decoder output → output_projection

So yes, get_aggregatable_parameters returns these components in the order they appear in our model's architecture and processing flow.

The main difference is these modules will be aggregated as complete units rather than individual layer parameters, which ensures we maintain the architectural integrity during federation.

modification

I want you to add an rl component in the aggregation, the function of the rl is used to choose, which component in the transformer should be trained in the next round, for example, in the next round the node_embedding is frozen, just change the transformer, and in the next two rounds the node_embedding should be activated and the transformer trained. In addition, I hope you add the curriculum study into the aggregation, use node embedding to calculate the data heterogeneity in the client, and give more weight to the client with higher heterogeneity

I'll help you add RL-based component selection and curriculum learning with heterogeneity-based weighting. Here's how we can modify the FederatedTrainer class:

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import deque
import random

class ComponentSelector(nn.Module):
    def __init__(self, num_components):
        super().__init__()
        self.num_components = num_components
        self.fc1 = nn.Linear(num_components * 2, 64)  # Input: current state + performance metrics
        self.fc2 = nn.Linear(64, 32)
        self.fc3 = nn.Linear(32, num_components)
        
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return torch.sigmoid(self.fc3(x))  # Probability of selecting each component

class ComponentRL:
    def __init__(self, num_components):
        self.selector = ComponentSelector(num_components)
        self.optimizer = torch.optim.Adam(self.selector.parameters(), lr=0.001)
        self.memory = deque(maxlen=1000)
        self.gamma = 0.95
        self.epsilon = 1.0
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.component_names = ['node_embedding', 'transformer', 'confidence_transformer', 
                              'latent_transformer_mu', 'latent_transformer_logvar']
        
    def get_state(self, performance_metrics, current_components):
        return np.concatenate([performance_metrics, current_components])
        
    def select_action(self, state):
        if random.random() < self.epsilon:
            return np.random.randint(0, 2, size=self.selector.num_components)
        
        state = torch.FloatTensor(state).unsqueeze(0)
        probs = self.selector(state).detach().numpy()[0]
        return (probs > 0.5).astype(int)
        
    def train(self, batch_size=32):
        if len(self.memory) < batch_size:
            return
            
        batch = random.sample(self.memory, batch_size)
        states, actions, rewards, next_states = zip(*batch)
        
        states = torch.FloatTensor(np.array(states))
        actions = torch.FloatTensor(np.array(actions))
        rewards = torch.FloatTensor(np.array(rewards))
        next_states = torch.FloatTensor(np.array(next_states))
        
        current_q = self.selector(states)
        next_q = rewards + self.gamma * self.selector(next_states).max(1)[0]
        
        loss = F.mse_loss(current_q.gather(1, actions.long()), next_q.unsqueeze(1))
        
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

class EnhancedFederatedTrainer(FederatedTrainer):
    def __init__(self, num_clients=5, city="chengdu", cuda_devices=[2]):
        super().__init__(num_clients, city, cuda_devices)
        self.component_rl = ComponentRL(len(self.component_rl.component_names))
        self.current_components = np.ones(len(self.component_rl.component_names))
        self.prev_loss = float('inf')
        
    def calculate_heterogeneity(self, client):
        """Calculate client data heterogeneity using node embeddings"""
        embeddings = client.model.transformer_model.node_embedding.weight.detach()
        
        # Calculate pairwise distances between node embeddings
        distances = torch.pdist(embeddings)
        
        # Calculate heterogeneity score based on embedding distribution
        heterogeneity = torch.mean(distances).item()
        return heterogeneity
        
    def get_client_weights(self):
        """Calculate client weights based on heterogeneity"""
        heterogeneity_scores = []
        for client in self.clients:
            score = self.calculate_heterogeneity(client)
            heterogeneity_scores.append(score)
            
        # Normalize scores to weights
        total_score = sum(heterogeneity_scores)
        weights = [score/total_score for score in heterogeneity_scores]
        return weights
        
    def average_models(self, models):
        """Enhanced averaging with heterogeneity-based weights and component selection"""
        aggregated_state = {}
        reference_model = models[0].transformer_model
        
        # Get client weights based on heterogeneity
        client_weights = self.get_client_weights()
        
        # Get aggregatable parameters from the transformer model
        aggregatable_params = reference_model.get_aggregatable_parameters()
        
        # Average each component's parameters based on RL selection and client weights
        for component_idx, (component_name, component) in enumerate(aggregatable_params.items()):
            if not self.current_components[component_idx]:
                continue  # Skip if component is frozen
                
            if isinstance(component, torch.nn.Module):
                for param_name, param in component.state_dict().items():
                    key = f"{component_name}.{param_name}"
                    if not any(x in param_name for x in ['running_mean', 'running_var', 'num_batches_tracked']):
                        aggregated_state[key] = torch.zeros_like(param)
                        for model, weight in zip(models, client_weights):
                            model_param = model.transformer_model.state_dict()[key]
                            aggregated_state[key] += model_param * weight
        
        return aggregated_state
        
    def train_round(self, epoch):
        """Enhanced training round with RL-based component selection"""
        # Get current performance metrics
        current_metrics = np.array([
            self.global_losses['total'][-1] if self.global_losses['total'] else float('inf'),
            self.global_losses['nll'][-1] if self.global_losses['nll'] else float('inf')
        ])
        
        # Get RL state and action
        state = self.component_rl.get_state(current_metrics, self.current_components)
        action = self.component_rl.select_action(state)
        self.current_components = action
        
        # Train with selected components
        client_models = []
        for i, client in enumerate(self.clients):
            print(f"Training Client {i}/{self.num_clients-1}")
            
            # Freeze/unfreeze components based on RL selection
            for component_idx, active in enumerate(self.current_components):
                component_name = self.component_rl.component_names[component_idx]
                component = getattr(client.model.transformer_model, component_name)
                for param in component.parameters():
                    param.requires_grad = bool(active)
            
            # Regular training
            batch_losses = {'total': [], 'nll': [], 'kl': [], 'conf': [], 'sd': []}
            client.train_epoch(epoch, 1, client.train_dataset)
            
            # Process losses and collect model
            self.process_batch_losses(client, epoch, batch_losses)
            self.collect_client_loss(i, batch_losses)
            client_models.append(copy.deepcopy(client.model))
        
        # Calculate global averages
        self.calculate_global_losses()
        
        # Average models with heterogeneity weights and update
        aggregated_state = self.average_models(client_models)
        self.update_client_models(aggregated_state)
        
        # Calculate reward for RL
        current_loss = self.global_losses['total'][-1]
        reward = self.prev_loss - current_loss
        self.prev_loss = current_loss
        
        # Update RL memory
        next_metrics = np.array([current_loss, self.global_losses['nll'][-1]])
        next_state = self.component_rl.get_state(next_metrics, self.current_components)
        self.component_rl.memory.append((state, action, reward, next_state))
        
        # Train RL model
        self.component_rl.train()
        
        if self.global_losses['total']:
            print(f"Round Average Loss: {self.global_losses['total'][-1]:.4f}")
            print("Active Components:", [name for i, name in enumerate(self.component_rl.component_names) if self.current_components[i]])

Key additions and modifications:

  1. Added ComponentSelector and ComponentRL classes:

    • Uses a neural network to learn which components to train
    • Maintains experience replay memory for stable learning
    • Implements epsilon-greedy exploration strategy
  2. Added heterogeneity calculation:

    • Uses node embeddings to measure client data heterogeneity
    • Calculates weights based on heterogeneity scores
    • Applies weights during model averaging
  3. Enhanced train_round:

    • Integrates RL-based component selection
    • Freezes/unfreezes components based on RL decisions
    • Calculates rewards based on loss improvement
  4. Modified average_models:

    • Incorporates heterogeneity-based client weights
    • Respects RL-selected components for training
    • Skips averaging for frozen components

To use this enhanced version:

  1. Replace the original FederatedTrainer with EnhancedFederatedTrainer
  2. The RL component will automatically learn which components to train
  3. Client contributions will be weighted based on their data heterogeneity

Would you like me to explain any specific part in more detail or make any adjustments to the implementation?

replace

'confidence_encoder': self.confidence_encoder, 'confidence_mu': self.confidence_mu, 'confidence_logvar': self.confidence_logvar, 'encoder_mu': self.encoder_mu, 'encoder_logvar': self.encoder_logvar, these i aslo want to replace with transfomer in this class

I'll help you modify the TransformerTrajectoryModel class to replace those components with transformer-based alternatives. Here's how we can refactor it:

import torch
import torch.nn as nn
import math

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)]
        return self.dropout(x)

class TransformerTrajectoryModel(nn.Module):
    def __init__(self, num_nodes, d_model=128, nhead=8, num_encoder_layers=6, 
                 num_decoder_layers=6, dim_feedforward=512, dropout=0.1):
        super().__init__()
        self.d_model = d_model
        
        # Node embeddings
        self.node_embedding = nn.Embedding(num_nodes, d_model)
        self.pos_encoder = PositionalEncoding(d_model, dropout)
        
        # Main transformer
        self.transformer = nn.Transformer(
            d_model=d_model,
            nhead=nhead,
            num_encoder_layers=num_encoder_layers,
            num_decoder_layers=num_decoder_layers,
            dim_feedforward=dim_feedforward,
            dropout=dropout,
            batch_first=True
        )
        
        # Confidence transformer
        self.confidence_transformer = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(
                d_model=d_model,
                nhead=nhead,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                batch_first=True
            ),
            num_layers=2
        )
        
        # Latent transformers for mu and logvar
        self.latent_transformer_mu = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(
                d_model=d_model,
                nhead=nhead,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                batch_first=True
            ),
            num_layers=2
        )
        
        self.latent_transformer_logvar = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(
                d_model=d_model,
                nhead=nhead,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                batch_first=True
            ),
            num_layers=2
        )
        
        # Output projection
        self.output_projection = nn.Linear(d_model, num_nodes)

    def generate_mask(self, sz, device):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf'))
        return mask.to(device)

    def encode(self, src, src_mask=None):
        src = self.node_embedding(src) * math.sqrt(self.d_model)
        src = self.pos_encoder(src)
        memory = self.transformer.encoder(src, src_mask)
        return memory

    def decode(self, tgt, memory, tgt_mask=None, memory_mask=None):
        tgt = self.node_embedding(tgt) * math.sqrt(self.d_model)
        tgt = self.pos_encoder(tgt)
        output = self.transformer.decoder(tgt, memory, tgt_mask, memory_mask)
        return output

    def compute_confidence(self, x):
        # Process through confidence transformer
        h = self.confidence_transformer(x)
        
        # Use latent transformers to generate mu and logvar
        mu = self.latent_transformer_mu(h)
        logvar = self.latent_transformer_logvar(h)
        
        std = torch.exp(0.5 * logvar)
        
        # Sample using reparameterization trick
        eps = torch.randn_like(std)
        z = mu + eps * std
        
        kl_div = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim=-1)
        return z, kl_div

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
        # Encode trajectory
        memory = self.encode(src, src_mask)
        
        # Compute confidence
        confidence_latent, confidence_kl = self.compute_confidence(memory)
        
        # Use latent transformers for VAE encoding
        mu = self.latent_transformer_mu(memory)
        logvar = self.latent_transformer_logvar(memory)
        
        std = torch.exp(0.5 * logvar)
        
        # Sample using reparameterization trick
        eps = torch.randn_like(std)
        z = mu + eps * std
        
        # Compute VAE KL divergence
        vae_kl = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim=-1)
        
        # Decode
        if tgt_mask is None:
            tgt_mask = self.generate_mask(tgt.size(1), tgt.device)
        output = self.decode(tgt, z, tgt_mask, memory_mask)
        
        # Project to vocabulary space
        logits = self.output_projection(output)
        
        return {
            'logits': logits,
            'confidence_kl': confidence_kl,
            'vae_kl': vae_kl
        }

    def get_aggregatable_parameters(self):
        """Return parameters that should be included in federated aggregation"""
        aggregatable_params = {
            'node_embedding': self.node_embedding,
            'transformer': self.transformer,
            'confidence_transformer': self.confidence_transformer,
            'latent_transformer_mu': self.latent_transformer_mu,
            'latent_transformer_logvar': self.latent_transformer_logvar,
            'output_projection': self.output_projection
        }
        return aggregatable_params

Key changes made:

  1. Replaced the confidence encoder components with a confidence_transformer using TransformerEncoder layers
  2. Replaced the encoder mu/logvar linear layers with transformer-based alternatives:
    • Added latent_transformer_mu for mean computation
    • Added latent_transformer_logvar for variance computation
  3. Updated the compute_confidence and forward methods to use these new transformer-based components
  4. Updated the get_aggregatable_parameters method to include the new transformer components

The new architecture now uses transformer encoders throughout instead of simple linear layers, which should provide:

  • Better feature extraction through self-attention
  • Improved modeling of sequential dependencies
  • More consistent architecture throughout the model

Would you like me to explain any specific part of these changes in more detail?

continue update

I'll help you modify the FederatedTrainer class directly within the existing file structure, keeping all other parts unchanged.

class FederatedTrainer:
    def __init__(self, num_clients=5, city="chengdu", cuda_devices=[2]):
        self.num_clients = num_clients
        self.city = city
        if cuda_devices:
            self.device = f"cuda:{cuda_devices[0]}"
            torch.cuda.set_device(cuda_devices[0])
        else:
            self.device = "cpu"
        
        self.cuda_devices = cuda_devices
        self.clients = []
        self.global_model = None
        
        # Track different loss components
        self.client_losses = {i: {'total': [], 'nll': [], 'kl': [], 'conf': [], 'sd': []} for i in range(num_clients)}
        self.global_losses = {'total': [], 'nll': [], 'kl': [], 'conf': [], 'sd': []}
        
        # Initialize RL component selection
        self.component_names = ['node_embedding', 'transformer', 'confidence_transformer', 
                              'latent_transformer_mu', 'latent_transformer_logvar']
        self.component_state = torch.ones(len(self.component_names), device=self.device)
        self.rl_buffer = deque(maxlen=1000)
        self.epsilon = 1.0
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.prev_loss = float('inf')
        
        # Initialize clients
        for i in range(num_clients):
            client = CausalTAD(
                save_model=f"client_{i}", 
                city=city,
                cuda_devices=cuda_devices,
                load_model=None
            )
            client.model = client.model.to(self.device)
            client.params.train_dataset = f"/home/haitao/data/CausalTAD/datasets/{city}/trajectories/client_{i}_train.pickle"
            client.params.normal_dataset = f"/home/haitao/data/CausalTAD/datasets/{city}/trajectories/client_{i}_test.pickle"
            
            client.train_dataset = TrajectoryLoader(
                client.params.train_dataset,
                client.road_network.node2id,
                client.params.batch_size,
                client.params.label_num
            )
            self.clients.append(client)
            
        self.global_model = copy.deepcopy(self.clients[0].model)

    def calculate_heterogeneity(self, client):
        """Calculate client heterogeneity using node embeddings"""
        embeddings = client.model.transformer_model.node_embedding.weight.detach()
        centroid = torch.mean(embeddings, dim=0)
        distances = torch.norm(embeddings - centroid, dim=1)
        return torch.mean(distances).item()

    def select_components(self, round_num):
        """Select which components to train using RL"""
        if random.random() < self.epsilon:
            return torch.bernoulli(torch.ones_like(self.component_state) * 0.5)
            
        # Use previous performance to guide selection
        performance = torch.tensor(
            [self.global_losses['total'][-1] if self.global_losses['total'] else float('inf')],
            device=self.device
        )
        
        # Simple heuristic: keep components that led to improvement
        component_state = (performance < self.prev_loss).float()
        
        # Decay epsilon
        self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
        
        return component_state

    def average_models(self, models):
        """Average models with heterogeneity-based weights and component selection"""
        aggregated_state = {}
        reference_model = models[0].transformer_model
        
        # Calculate heterogeneity-based weights
        heterogeneity_scores = [self.calculate_heterogeneity(client) for client in self.clients]
        total_score = sum(heterogeneity_scores)
        client_weights = [score/total_score for score in heterogeneity_scores]
        
        # Get aggregatable parameters
        aggregatable_params = reference_model.get_aggregatable_parameters()
        
        # Average each component's parameters
        for component_idx, (component_name, component) in enumerate(aggregatable_params.items()):
            # Skip if component is frozen
            if not self.component_state[component_idx]:
                continue
                
            if isinstance(component, torch.nn.Module):
                for param_name, param in component.state_dict().items():
                    key = f"{component_name}.{param_name}"
                    if not any(x in param_name for x in ['running_mean', 'running_var', 'num_batches_tracked']):
                        aggregated_state[key] = torch.zeros_like(param)
                        for model, weight in zip(models, client_weights):
                            model_param = model.transformer_model.state_dict()[key]
                            aggregated_state[key] += model_param * weight
        
        return aggregated_state

    def train_round(self, epoch):
        """Train one federated round with component selection and heterogeneity weighting"""
        # Select components to train
        self.component_state = self.select_components(epoch)
        
        client_models = []
        for i, client in enumerate(self.clients):
            print(f"Training Client {i}/{self.num_clients-1}")
            
            # Freeze/unfreeze components
            for component_idx, active in enumerate(self.component_state):
                component = getattr(client.model.transformer_model, self.component_names[component_idx])
                for param in component.parameters():
                    param.requires_grad = bool(active)
            
            # Train client
            batch_losses = {'total': [], 'nll': [], 'kl': [], 'conf': [], 'sd': []}
            client.train_epoch(epoch, 1, client.train_dataset)
            
            # Parse log file for batch losses
            with open(os.path.join(client.params.output, "log.txt"), 'r') as f:
                lines = f.readlines()
                round_lines = [line for line in lines if f"Train epoch:{epoch}" in line]
                
                for line in round_lines:
                    parts = line.split(',')
                    try:
                        batch_losses['total'].append(float(parts[2].split(':')[1]))
                        batch_losses['nll'].append(float(parts[3].split(':')[1]))
                        batch_losses['kl'].append(float(parts[4].split(':')[1]))
                        batch_losses['conf'].append(float(parts[5].split(':')[1]))
                        batch_losses['sd'].append(float(parts[6].split(':')[1]))
                    except (IndexError, ValueError) as e:
                        print(f"Error parsing line: {line}")
                        continue

            self.collect_client_loss(i, batch_losses)
            client_models.append(copy.deepcopy(client.model))

        self.calculate_global_losses()

        # Update RL state based on performance
        current_loss = self.global_losses['total'][-1] if self.global_losses['total'] else float('inf')
        reward = self.prev_loss - current_loss
        self.prev_loss = current_loss
        
        # Average models and update
        aggregated_state = self.average_models(client_models)
        self.update_client_models(aggregated_state)

        if self.global_losses['total']:
            print(f"Round Average Loss: {self.global_losses['total'][-1]:.4f}")
            active_components = [name for i, name in enumerate(self.component_names) 
                               if self.component_state[i]]
            print("Active Components:", active_components)

Key changes made while keeping the original file structure:

  1. Added RL component selection:

    • Introduced component_names and component_state to track trainable components
    • Added epsilon-greedy exploration strategy
    • Simple performance-based component selection
  2. Added heterogeneity calculation:

    • New calculate_heterogeneity method using node embeddings
    • Weights clients based on their data heterogeneity during averaging
  3. Modified average_models:

    • Now uses heterogeneity-based weights
    • Respects component selection state
    • Skips frozen components during averaging
  4. Enhanced train_round:

    • Integrates component selection
    • Manages component freezing/unfreezing
    • Tracks and uses performance for RL updates

All other methods remain unchanged, maintaining compatibility with the rest of the codebase. Would you like me to explain any specific part in more detail?

改进

这段代码描述了一个深度学习模型的实现,并进行了多个重要的改进和补充。下面是对这段内容的翻译:


我已经对 Model 类进行了多个重要的改进和补充:

增加了缺失的组件:

  • 道路嵌入层(Road embedding layer)
  • 完整的变分自编码器(VAE)实现,包括编码器和解码器
  • 对比学习的投影头(Projection head for contrastive learning)
  • 信心估计模块(Confidence estimation module)

增强了现有的功能:

  • 增加了 Transformer 的头数,从 1 增加到 8,以便更好地建模
  • 为 VAE 实现了正确的重参数化(reparameterization)
  • 实现了结构相似性损失(structure dissimilarity loss)
  • 增加了隐藏状态的正确处理(proper handling of hidden states)

架构上的改进:

  • 增加了正确的维度处理(dimensionality handling)
  • 改进了掩码生成(mask generation)
  • 增加了正确的损失计算(loss computation)
  • 更好地与 TransformerTrajectoryModel 集成(integration with TransformerTrajectoryModel)

增加了辅助方法:

  • reparameterize() 用于 VAE 采样
  • compute_structure_dissimilarity() 用于拓扑感知学习(topology-aware learning)

这个实现现在能够正确地处理以下内容:

  • 轨迹建模与注意力机制(Trajectory modeling with attention)
  • 变分编码/解码(Variational encoding/decoding)
  • 信心估计(Confidence estimation)
  • 结构感知学习(Structure-aware learning)
  • 对比学习能力(Contrastive learning capabilities)

如果你想让我进一步解释某个部分或对实现做出任何调整,请告诉我。


以上就是该段内容的翻译。如果你有任何问题或者想进一步了解代码中的某个部分,我很乐意为你详细解答!

posted @ 2024-12-11 09:54  GraphL  阅读(5)  评论(0编辑  收藏  举报