Tensorflow中张量的数学运算
对于对数运算,Tensorflow中之提供了e为底数的对数运算tf.math.log(x),如果想要自定义底数,可以利用换底公式
张量运算的广播机制:如果一个高维张量和低维张量相乘,则会将低维张量广播到高维张量上。例如一个2维张量加一个1维张量:
再例如:一个3维张量加(乘)一个一维张量:
另外,说一下tf.multiply()和tf.matmul()的区别:(前者可以用*来替代,后者可以用@来替代)
tf.multiply()函数时对应位置的元素相乘。tf.matmul()是矩阵相乘,就是线性代数中的那种两个矩阵相乘。
多维张量相乘,也是采用广播机制。例如3为乘3维:
再例如:4维乘4维
另外,求最值问题:
--------------------成功,肯定是需要一点一滴积累的--------------------