【算法】快排

快速排序


  其利用的思想就是分治思想,最开始先从数组中随机选择一个元素p(为什么随机下面解释),然后以这个元素对数组中的元素进行分类,数组左侧都是小于p的元素, 右侧都是大于等于p的元素。这样就让数组分成了两部分。然后我们分别对左边和右边进行进行同样的操作(先随机选择元素,再进行分组)直到所有元素都排完序。

复杂度及优化


   时间复杂度为:O(nlogn), 空间复杂度为O(1), 不稳定排序(排序后的数组和排序前的数组中相同元素的位置改变)、原地排序。快排有些时候会出现一些比较大的问题,那就是元素p的选择,如果每次不小心选择了最大的一个元素,那么时间复杂度就会退化为O(n2),这样和选择排序毫无差别,但是我们怎么尽量避免这种情况?那就是改善选择元素的值,一开始我使用的是随机选择法,这种情况下虽然也会存在时间复杂度升高的问题,但是根据概率的情况来说几率不大,随着数组的长度越大,概率也就越低。另外还有一种办法,三数取中法,具体就是我们取第一个元素,中间一个元素和最后一个元素,然后选择大小位于中间的一个元素来作为p,这样也可以大概率避免时间复杂度升高。当数组的长度很大时,我们我们可以适当增加元素个数,比如说取五个元素然后再取大小为中间的值等等。

图示步骤


 

                                    

实现代码


 

 1 def quick(arry, start, end):
 2     if len(arry) < 2:         # 当数组中只有一个元素时就直接返回
 3         return
 4     index = quickly_sort(arry, start, end)   # 第一次进行分组
 5 
 6     if index > start:                        # 如果分组之后的下标还是大于起始位置,继续进行分组排序。
 7         quick(arry, start, index-1)
 8     if index < end:                          #  如果分组之后的下标小于结束位置, 则继续进行分组排序。
 9         quick(arry, index+1, end)
10 
11 
12 def quickly_sort(arry, start, end):          
13     if len(arry) < 1:
14         return
15     index = random.randint(start, end)       # 随机选择一个下标
16     arry[index], arry[end] = arry[end], arry[index]      # 交换下标位置和最后一个元素之间的位置,
17     small = start - 1                        # 大于标志元素的标志位
18     for i in range(start, end): 
19         if arry[i] < arry[end]:              
20             small += 1
21             if small != i:        
22                 arry[small], arry[i] = arry[i], arry[small]     # 交换两个元素
23     small += 1                                                  # 
24     arry[small], arry[end] = arry[end], arry[small]             # 最后交换分组之后的分界位置,
25     return small

图示:


         

 

posted @ 2019-03-27 11:04  GoodRnne  阅读(771)  评论(0编辑  收藏  举报