[Luogu P1613]跑路 (DP+倍增+最短路)
题面
传送门:https://www.luogu.org/problemnew/show/P1613
Solution
挺有意思的一道题。
题面已经挺明显的描述出了这题的主要思想:倍增。
先这样想,我们可以把这题这样建模:有一堆点,若两个点之间的距离之和可以达到2的n次方,那么这两个点可以用1的时间相互到达。
也就是说,我们把距离能为2的n次方的点对用边权为1的边连上,再做一次最短路径,就可以求出答案了。
接下来问题就是如何求出每两个点是否能以2的n次方的时间相互到达。
考虑使用DP。
我们设f[i][j][k] 表示 i到j是否能以2的k次方的距离相互到达。
转移的时候得运用倍增的思想:若两个点能以两端2的k-1次方的距离相互到达,那么两个点就能以2的k次方的距离相互到。
接下来我们就可以运用类似Floyd的办法来处理这个DP,我们可以在最外层枚举这个k,里面三层和Floyd的意义一模一样,就是枚举中转点与起始点。
初始化就是题目中直接相连的两个点,它们的f[a][b][0]=1 (它们距离为1,是2的0次方)
时间复杂度: O(n^3*64)
Code
//Luogu P1613 跑路 //June,13th,2018 //倍增+DP+最短路 #include<iostream> #include<cstdio> #include<cstring> using namespace std; long long read() { long long x=0,f=1; char c=getchar(); while(!isdigit(c)){if(c=='-') f=-1;c=getchar();} while(isdigit(c)){x=x*10+c-'0';c=getchar();} return x*f; } const int N=50+10; const int K=65+10; int f[N][N][K],dis[N][N],n,m; int main() { n=read(),m=read(); memset(dis,0x3f,sizeof dis); for(int i=1;i<=m;i++) { int s=read(),t=read(); f[s][t][0]=1; dis[s][t]=1; } for(int o=1;o<=64;o++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=1;k<=n;k++) if(f[j][i][o-1]==true and f[i][k][o-1]==true) { f[j][k][o]=true; dis[j][k]=1; } for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=1;k<=n;k++) dis[j][k]=min(dis[j][k],dis[j][i]+dis[i][k]); printf("%d",dis[1][n]); return 0; }
自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。