Processing math: 100%

「JOISC 2014 Day4」两个人的星座

首先突破口肯定在三角形不交,考虑寻找一些性质。

  • 引理一:两个三角形不交当且仅当存在一个三角形的一条边所在直线将两个三角形分为异侧

证明可以参考:三角形相离充要条件,大致思路是取两个三角形重心连线,将其中一个三角形延重心连线平移两三角形总会相交,同时也能根据相交情况找到一条这样的直线。

  • 引理二:若三角形任意三点不共线,则两个三角形不交当且仅当存在两条内公切线

根据引理一,将所得到的直线平移并旋转一定能得到两条内公切线。

直接借助引理一不好将问题分割,考虑利用引理二。

注意到一对不相交的三角形公切线数量为常数,于是枚举公切线的两个切点,问题转化为上下两个半平面内找出另外两种颜色的方案数,可以直接暴力统计。

发现同一种方案在会被四个有序切点对统计到,因此最后答案需要除 4,复杂度 O(n3).

考虑优化,枚举一个点,将其他所有点极角排序,半平面的颜色数按照极角排序枚举可以双指针优化,复杂度 O(n2logn).

posted @   Achtoria  阅读(89)  评论(0编辑  收藏  举报
编辑推荐:
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· .NET Core 托管堆内存泄露/CPU异常的常见思路
· PostgreSQL 和 SQL Server 在统计信息维护中的关键差异
· C++代码改造为UTF-8编码问题的总结
· DeepSeek 解答了困扰我五年的技术问题
阅读排行:
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· 清华大学推出第四讲使用 DeepSeek + DeepResearch 让科研像聊天一样简单!
· 实操Deepseek接入个人知识库
· CSnakes vs Python.NET:高效嵌入与灵活互通的跨语言方案对比
· Plotly.NET 一个为 .NET 打造的强大开源交互式图表库
点击右上角即可分享
微信分享提示