BZOJ2299 HAOI2011向量(数论)
设最后的组成为x=x0a+x1b,y=y0a+y1b。那么容易发现x0和y0奇偶性相同、x1和y1奇偶性相同。于是考虑奇偶两种情况,问题就变为是否存在x和y使ax+by=c,那么其充要条件是gcd(a,b)|c。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int gcd(int n,int m){return m==0?n:gcd(m,n%m);} bool check(int a,int b,long long x,long long y) { if (x&1) return 0; if (y&1) return 0; x>>=1,y>>=1; int n=gcd(a,b); return x%n==0&&y%n==0; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj2299.in","r",stdin); freopen("bzoj2299.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif int T=read(); while (T--) { int a=read(),b=read();long long x=read(),y=read(); if (check(a,b,x,y)||check(a,b,x-a,y-b)||check(a,b,x-b,y-a)||check(a,b,x-a-b,y-a-b)) printf("Y\n"); else printf("N\n"); } return 0; }