BZOJ3160 万径人踪灭(FFT+manacher)
容易想到先统计回文串数量,这样就去掉了不连续的限制,变为统计回文序列数量。
显然以某个位置为对称轴的回文序列数量就是2其两边(包括自身)对称相等的位置数量-1。对称有啥性质?位置和相等。这不就是卷积嘛。那么就做完了。
又写挂manacher,没救。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define N 270000 #define P 1000000007 int n,m,s[N],t,r[N],f[N],p[N],ans=0; const double PI=3.14159265358979324; struct complex { double x,y; complex operator +(const complex&a) const { return (complex){x+a.x,y+a.y}; } complex operator -(const complex&a) const { return (complex){x-a.x,y-a.y}; } complex operator *(const complex&a) const { return (complex){x*a.x-y*a.y,x*a.y+y*a.x}; } }a[N],b[N]; void DFT(int n,complex *a,int p) { for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]); for (int i=2;i<=n;i<<=1) { complex wn=(complex){cos(2*PI/i),p*sin(2*PI/i)}; for (int j=0;j<n;j+=i) { complex w=(complex){1,0}; for (int k=j;k<j+(i>>1);k++,w=w*wn) { complex x=a[k],y=w*a[k+(i>>1)]; a[k]=x+y,a[k+(i>>1)]=x-y; } } } } void mul(int n,complex *a,complex *b) { for (int i=0;i<n;i++) a[i].y=a[i].x-b[i].x,a[i].x=a[i].x+b[i].x; DFT(n,a,1); for (int i=0;i<n;i++) a[i]=a[i]*a[i]; DFT(n,a,-1); for (int i=0;i<n;i++) a[i].x=a[i].x/n/4; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj3160.in","r",stdin); freopen("bzoj3160.out","w",stdout); const char LL[]="%I64d"; #else const char LL[]="%lld"; #endif char c=getchar(); while (c=='a'||c=='b') s[n++]=c-96,c=getchar(); m=n*2-1; t=1;while (t<m) t<<=1; for (int i=0;i<t;i++) r[i]=(r[i>>1]>>1)|(i&1)*(t>>1); for (int i=0;i<n;i++) a[i].x=b[i].x=s[i]-1; mul(t,a,b); for (int i=0;i<m;i++) f[i]=(int){a[i].x+0.5}; for (int i=0;i<t;i++) a[i].x=a[i].y=b[i].x=b[i].y=0; for (int i=0;i<n;i++) a[i].x=b[i].x=2-s[i]; mul(t,a,b); for (int i=0;i<m;i++) f[i]+=(int){a[i].x+0.5}; for (int i=0;i<m;i++) f[i]=f[i]+1>>1; p[0]=1; for (int i=1;i<m;i++) p[i]=(p[i-1]<<1)%P; for (int i=0;i<m;i++) ans=(ans+p[f[i]]-1)%P; for (int i=m-1;~i;i--) s[i]=(i&1?0:s[i>>1]); for (int i=m;i;i--) s[i]=s[i-1]; s[0]=s[++m]=0; memset(r,0,sizeof(r)); r[0]=0;int x=0; for (int i=1;i<=m;i++) { if (x+r[x]>=i) r[i]=min(r[x-(i-x)],x+r[x]-i); while (i-r[i]-1>=0&&i+r[i]+1<=m&&s[i+r[i]+1]==s[i-r[i]-1]) r[i]++; if (i+r[i]>=x+r[x]) x=i; } for (int i=0;i<=m;i++) ans=(ans-(r[i]+1>>1)+P)%P; cout<<ans; return 0; }