Luogu4238 【模板】多项式求逆(NTT)
http://blog.miskcoo.com/2015/05/polynomial-inverse 好神啊!
B(x)=B'(x)·(2-A(x)B'(x))
注意ntt的时候防止项数溢出,即将多项式补零成n位后,相乘时次数最高的非零项不超过n次。
upd:可以在点值表示下直接相乘。又好写又跑得快。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define N 550000 #define P 998244353 int n,t,r[N],a[N],b[N],c[N],d[N]; int ksm(int a,int k) { if (k==0) return 1; int tmp=ksm(a,k>>1); if (k&1) return 1ll*tmp*tmp%P*a%P; else return 1ll*tmp*tmp%P; } int inv(int x){return ksm(x,P-2);} void DFT(int n,int *a,int p) { for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]); for (int i=2;i<=n;i<<=1) { int wn=ksm(p,(P-1)/i); for (int j=0;j<n;j+=i) { int w=1; for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P) { int x=a[k],y=1ll*w*a[k+(i>>1)]%P; a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P; } } } } int main() { #ifndef ONLINE_JUDGE freopen("inverse.in","r",stdin); freopen("inverse.out","w",stdout); const char LL[]="%I64d"; #else const char LL[]="%lld"; #endif n=read(); for (int i=0;i<n;i++) a[i]=read(); t=1;b[0]=inv(a[0]); int inv3=inv(3); while (t<n) { t<<=1; for (int i=0;i<t;i++) d[i]=a[i]; t<<=1; memcpy(c,b,sizeof(b)); for (int i=0;i<t;i++) r[i]=(r[i>>1]>>1)|(i&1)*(t>>1); DFT(t,c,3);DFT(t,d,3); for (int i=0;i<t;i++) c[i]=1ll*c[i]*d[i]%P; DFT(t,c,inv3); int invt=inv(t); for (int i=0;i<t;i++) c[i]=1ll*c[i]*invt%P; for (int i=0;i<t;i++) c[i]=(P-c[i])%P; c[0]=(c[0]+2)%P; for (int i=(t>>1);i<t;i++) c[i]=0; DFT(t,b,3);DFT(t,c,3); for (int i=0;i<t;i++) b[i]=1ll*b[i]*c[i]%P; DFT(t,b,inv3); for (int i=0;i<t;i++) b[i]=1ll*b[i]*invt%P; for (int i=(t>>1);i<t;i++) b[i]=0; t>>=1; } for (int i=0;i<n;i++) printf("%d ",b[i]); return 0; }