BZOJ4785 ZJOI2017树状数组(概率+二维线段树)

  可以发现这个写挂的树状数组求的是后缀和。find(r)-find(l-1)在模2意义下实际上查询的是l-1~r-1的和,而本来要查询的是l~r的和。也就是说,若结果正确,则a[l-1]=a[r](mod 2)。

  一个很容易想到的思路是线段树维护每一位为1的概率。然而这其实是不对的,因为每一位是否为1并非独立事件。

  世界上没有什么事情是用一维线段树解决不了的,如果有,那就两维

  我们维护每两位之间相同的概率。考虑一次操作对某两位的影响。若该次操作包含两位中的x位,那么改变两者间相同状态的概率就是x/len,len为该次修改的区间长度。设原相同概率为pi,j,那么操作后概率就变为(1-pi,j)*x/len+pi,j*(1-x/len)。这个式子神奇的满足交换律结合律,算的时候我们就不用管顺序了。

  用二维线段树就可以维护了。修改时先拆成外层线段树上的区间再在内层线段树修改,查询时将所有外层区间包含该点的内层线段树上的操作合在一起。并且需要标记永久化。

  注意l=1时find(l-1)直接返回0而不是整个数组的和,此时询问的是r后缀和r前缀是否相等,需要特判一下,记录修改了几次以及r这一位为0的概率(即和第0位相同的概率)。

  (写起来出乎意料的短

  (空间需要开的非常大

  (当然也可以cdq分治变成静态数点扫描线扫过去就好了

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
#define N 100010
#define P 998244353
int n,m,tot=0,inv[N],L[N<<2],R[N<<2],cnt=0;
int root[N<<2];
struct data{int l,r,x;
}tree[N*400];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int calc(int x,int y){return (1ll*x*(P+1-y)+1ll*y*(P+1-x))%P;}
void build(int k,int l,int r)
{
    L[k]=l,R[k]=r;
    if (l==r) return;
    int mid=l+r>>1;
    build(k<<1,l,mid);
    build(k<<1|1,mid+1,r);
}
void modify(int &k,int l,int r,int x,int y,int a)
{
    if (!k) k=++cnt;
    if (l==x&&r==y)
    {
        tree[k].x=calc(tree[k].x,a);
        return;
    }
    int mid=l+r>>1;
    if (y<=mid) modify(tree[k].l,l,mid,x,y,a);
    else if (x>mid) modify(tree[k].r,mid+1,r,x,y,a);
    else modify(tree[k].l,l,mid,x,mid,a),modify(tree[k].r,mid+1,r,mid+1,y,a);
}
int query(int k,int l,int r,int x,int ans)
{
    if (!k) return ans;
    ans=calc(ans,tree[k].x);
    if (l==r) return ans;
    int mid=l+r>>1;
    if (x<=mid) return query(tree[k].l,l,mid,x,ans);
    else return query(tree[k].r,mid+1,r,x,ans);
} 
void change(int k,int l,int r,int x,int y,int a)
{
    if (L[k]==l&&R[k]==r) {modify(root[k],0,n,x,y,a);return;}
    int mid=L[k]+R[k]>>1;
    if (r<=mid) change(k<<1,l,r,x,y,a);
    else if (l>mid) change(k<<1|1,l,r,x,y,a);
    else change(k<<1,l,mid,x,y,a),change(k<<1|1,mid+1,r,x,y,a);
}
int getans(int x,int y)
{
    int k=1,s=1;
    while (1)
    {
        s=calc(s,query(root[k],0,n,y,0));
        if (L[k]==R[k]) break;
        if (x<=(L[k]+R[k]>>1)) k<<=1;
        else k=k<<1|1; 
    }
    return s%P;
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj4785.in","r",stdin);
    freopen("bzoj4785.out","w",stdout);
    const char LL[]="%I64d";
#else
    const char LL[]="%lld";
#endif
    n=read(),m=read();
    inv[1]=1;
    for (int i=2;i<=n;i++) inv[i]=(P-1ll*(P/i)*inv[P%i]%P)%P;
    build(1,0,n);
    for (int i=1;i<=m;i++)
    {
        int op=read(),l=read(),r=read();
        if (op==1)
        {
            tot^=1;int x=inv[r-l+1];
            change(1,0,l-1,l,r,x);
            if (r<n) change(1,l,r,r+1,n,x);
            change(1,l,r,l,r,x*2%P);
        }
        else 
        {
            if (l==1) printf("%d\n",tot?(P+1-getans(l-1,r))%P:getans(l-1,r));
            else printf("%d\n",getans(l-1,r));
        }
    }
    return 0;
}

 

posted @ 2018-08-04 17:37  Gloid  阅读(214)  评论(0编辑  收藏  举报