BZOJ3926 ZJOI2015诸神眷顾的幻想乡(广义后缀自动机)
对多串建立SAM的一种方法是建trie再对trie建SAM。构造方式分为在线(也即不建trie而是依次插入每个串,或在trie上dfs)和离线(也即建好trie再bfs)。其中离线构造与单串的构造方式几乎没有区别,将父亲所在节点作为last即可,按bfs序建SAM可以避免出现要转移到的状态已经存在的情况。而在线构造时则需要考虑这点,若存在除了不用新建节点其余操作也与单串区别不大。
这种做法相比加分隔符建SAM,一方面避免了存在分隔符的尴尬状态的存在,方便于统计一些东西。(比如本题的本质不同子串数量,如果加分隔符就还要考虑一下right集合,不过好像影响也不是特别大?)另一方面这样建出的SAM总状态数是O(|T|)的,转移函数也即边数是O(|T||A|)的,虽然在线构造的复杂度是O(G(T)+|T||A|),但更简单的离线构造可以做到理论最低复杂度O(|T||A|)(|T|为trie总节点数,|A|为字符集大小,G(T)为trie上所有叶子深度之和,据论文,我当然啥都不知道);而加分隔符建SAM的上述所有复杂度都是O(G(T))。也就是说这种做法在直接给出trie的题中会吊打加分隔符。
对于本题,如果离线构造,拎出每个叶子作为根得到的trie合并起来建SAM即可。在线构造只要以每个叶子为根dfs并插进SAM。
在线:
#include<bits/stdc++.h> using namespace std; #define ll long long #define N 4000010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N],p[N],degree[N],id[N],son[N][10],fail[N],len[N],t,cnt=1; ll ans; struct data{int to,nxt; }edge[N]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} int ins(int c,int p) { if (son[p][c]) { int q=son[p][c]; if (len[p]+1==len[q]) return q; else { int y=++cnt; len[y]=len[p]+1; memcpy(son[y],son[q],sizeof(son[q])); fail[y]=fail[q],fail[q]=y; while (son[p][c]==q) son[p][c]=y,p=fail[p]; return y; } } else { int x=++cnt;len[x]=len[p]+1; while (!son[p][c]&&p) son[p][c]=x,p=fail[p]; if (!p) fail[x]=1; else { int q=son[p][c]; if (len[p]+1==len[q]) fail[x]=q; else { int y=++cnt; len[y]=len[p]+1; memcpy(son[y],son[q],sizeof(son[q])); fail[y]=fail[q],fail[x]=fail[q]=y; while (son[p][c]==q) son[p][c]=y,p=fail[p]; } } return x; } } void dfs(int k,int from) { id[k]=ins(a[k],id[from]); for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from) dfs(edge[i].to,k); } int main() { #ifndef ONLINE_JUDGE freopen("bzoj3926.in","r",stdin); freopen("bzoj3926.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif n=read();read(); for (int i=1;i<=n;i++) a[i]=read(); for (int i=1;i<n;i++) { int x=read(),y=read(); addedge(x,y),addedge(y,x); degree[x]++,degree[y]++; } id[0]=1; for (int i=1;i<=n;i++) if (degree[i]==1) dfs(i,0); for (int i=1;i<=cnt;i++) ans+=len[i]-len[fail[i]]; cout<<ans; return 0; }
离线:
#include<bits/stdc++.h> using namespace std; #define ll long long #define N 4000010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,c,a[N],p[N],degree[N],id[N],son[N][10],q[N],trie[N][10],fail[N],len[N],t,cnt; ll ans; struct data{int to,nxt; }edge[N]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} int ins(int c,int p) { int x=++cnt;len[x]=len[p]+1; while (!son[p][c]&&p) son[p][c]=x,p=fail[p]; if (!p) fail[x]=1; else { int q=son[p][c]; if (len[p]+1==len[q]) fail[x]=q; else { int y=++cnt; len[y]=len[p]+1; memcpy(son[y],son[q],sizeof(son[q])); fail[y]=fail[q],fail[x]=fail[q]=y; while (son[p][c]==q) son[p][c]=y,p=fail[p]; } } return x; } void dfs(int k,int from) { if (!trie[id[from]][a[k]]) trie[id[from]][a[k]]=++cnt; id[k]=trie[id[from]][a[k]]; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from) dfs(edge[i].to,k); } void bfs() { int head=0,tail=1;q[1]=0;id[0]=1;cnt=1; do { int x=q[++head]; for (int i=0;i<c;i++) if (trie[x][i]) { q[++tail]=trie[x][i]; id[trie[x][i]]=ins(i,id[x]); } }while (head<tail); } int main() { #ifndef ONLINE_JUDGE freopen("bzoj3926.in","r",stdin); freopen("bzoj3926.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif n=read(),c=read(); for (int i=1;i<=n;i++) a[i]=read(); for (int i=1;i<n;i++) { int x=read(),y=read(); addedge(x,y),addedge(y,x); degree[x]++,degree[y]++; } for (int i=1;i<=n;i++) if (degree[i]==1) dfs(i,0); bfs(); for (int i=1;i<=cnt;i++) ans+=len[i]-len[fail[i]]; cout<<ans; return 0; }
离线甚至慢了一倍,可能是要先建trie的原因。