BZOJ4912 SDOI2017天才黑客(最短路+虚树)
容易想到把边当成点重建图跑最短路。将每条边拆成入边和出边,作为新图中的两个点,由出边向入边连边权为原费用的边。对于原图中的每个点,考虑由其入边向出边连边。直接暴力两两连边当然会被卡掉,注意到其边权是trie上lca的深度,由lca转rmq的做法可知,两点lca即为欧拉序区间中它们之间深度最小的点,于是跑出欧拉序后对入边出边的前后缀建虚点连边即可。当然每次连边时都需要将trie上有用的点提取出来,建虚树即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<vector> #include<queue> using namespace std; #define ll long long #define N 50010 #define inf 2000000000 #define in(i) (i*2+n) #define out(i) (i*2+n-1) char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int T,n,m,k,p[N],t; struct data{int to,nxt,len,s; }edge[N]; vector<int> in_edge[N]; namespace trie { int p[N],t,fa[N][18],deep[N],dfn[N],cnt; struct data{int to,nxt;}edge[N]; void clear(){memset(p,0,sizeof(p));cnt=t=0;} void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} void dfs(int k) { dfn[k]=++cnt; for (int i=p[k];i;i=edge[i].nxt) { deep[edge[i].to]=deep[k]+1; fa[edge[i].to][0]=k; dfs(edge[i].to); } } void build() { fa[1][0]=1;dfs(1); for (int j=1;j<18;j++) for (int i=1;i<=k;i++) fa[i][j]=fa[fa[i][j-1]][j-1]; } int lca(int x,int y) { if (deep[x]<deep[y]) swap(x,y); for (int j=17;~j;j--) if (deep[fa[x][j]]>=deep[y]) x=fa[x][j]; if (x==y) return x; for (int j=17;~j;j--) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j]; return fa[x][0]; } } namespace graph { int p[N<<6],t,cnt,dis[N<<6]; bool flag[N<<6]; struct data{int to,nxt,len;}edge[N<<7]; struct data2 { int x,d; bool operator <(const data2&a) const { return d>a.d; } }; priority_queue<data2> q; void addedge(int x,int y,int z){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=z,p[x]=t;} void clear(){cnt=n+m*2;t=0;memset(p,0,sizeof(p));} void dijkstra() { for (int i=1;i<=cnt;i++) dis[i]=inf;dis[1]=0; memset(flag,0,sizeof(flag)); q.push((data2){1,0}); for (;;) { while (!q.empty()&&flag[q.top().x]) q.pop(); if (q.empty()) break; data2 x=q.top();q.pop(); flag[x.x]=1; for (int i=p[x.x];i;i=edge[i].nxt) if (dis[x.x]+edge[i].len<dis[edge[i].to]) { dis[edge[i].to]=dis[x.x]+edge[i].len; q.push((data2){edge[i].to,dis[edge[i].to]}); } } } } namespace virtual_tree { int a[N],tot,stk[N],id[N<<1],top,p[N],x[N],y[N],idin[N<<1],idout[N<<1],pre[N<<1],suf[N<<1],t,cnt; struct data{int to,nxt;}edge[N<<1]; void addedge(int u,int v){t++;x[t]=u,y[t]=v;} void clear(){tot=top=t=cnt=0;} void push(int x){a[++tot]=x;} bool cmp(const int&a,const int&b) { return trie::dfn[a]<trie::dfn[b]; } void dfs(int k) { id[++cnt]=k;idin[k]=graph::cnt+cnt; for (int i=p[k];i;i=edge[i].nxt) { dfs(edge[i].to); id[++cnt]=k; } } void build() { if (tot==0) return; sort(a+1,a+tot+1,cmp); tot=unique(a+1,a+tot+1)-a-1; stk[++top]=1; for (int i=1+(a[1]==1);i<=tot;i++) { int l=trie::lca(a[i],stk[top]); if (stk[top]!=l) { while (top>1&&trie::deep[stk[top-1]]>=trie::deep[l]) addedge(stk[top-1],stk[top]),top--; if (stk[top]!=l) addedge(l,stk[top]); stk[top]=l; } stk[++top]=a[i]; } while (top>1) addedge(stk[top-1],stk[top]),top--; for (int i=1;i<=t;i++) p[x[i]]=p[y[i]]=0; for (int i=1;i<=t;i++) edge[i].to=y[i],edge[i].nxt=p[x[i]],p[x[i]]=i; dfs(1);for (int i=1;i<=cnt;i++) idout[id[i]]=idin[id[i]]+cnt;graph::cnt+=cnt<<1; for (int i=1;i<=cnt;i++) { pre[i]=++graph::cnt; graph::addedge(idin[id[i]],pre[i],0); if (i>1) graph::addedge(pre[i-1],pre[i],0); } for (int i=cnt;i>=1;i--) { suf[i]=++graph::cnt; graph::addedge(suf[i],idout[id[i]],0); if (i<cnt) graph::addedge(suf[i],suf[i+1],0); } for (int i=1;i<=cnt;i++) graph::addedge(pre[i],suf[i],trie::deep[id[i]]); for (int i=1;i<=cnt;i++) { pre[i]=++graph::cnt; graph::addedge(pre[i],idout[id[i]],0); if (i>1) graph::addedge(pre[i],pre[i-1],0); } for (int i=cnt;i>=1;i--) { suf[i]=++graph::cnt; graph::addedge(idin[id[i]],suf[i],0); if (i<cnt) graph::addedge(suf[i+1],suf[i],0); } for (int i=1;i<=cnt;i++) graph::addedge(suf[i],pre[i],trie::deep[id[i]]); } } int main() { #ifndef ONLINE_JUDGE freopen("bzoj4912.in","r",stdin); freopen("bzoj4912.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif T=read(); while (T--) { n=read(),m=read(),k=read(); memset(p,0,sizeof(p));t=0; for (int i=1;i<=n;i++) in_edge[i].clear(); for (int i=1;i<=m;i++) { int x=read(),y=read(),len=read(),s=read(); t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=len,edge[t].s=s,p[x]=t; } trie::clear(); for (int i=1;i<k;i++) { int x=read(),y=read(),z=read(); trie::addedge(x,y); } trie::build(); graph::clear(); for (int i=p[1];i;i=edge[i].nxt) graph::addedge(1,out(i),0); for (int i=1;i<=m;i++) if (edge[i].to!=1) graph::addedge(in(i),edge[i].to,0); for (int i=1;i<=m;i++) graph::addedge(out(i),in(i),edge[i].len); for (int i=1;i<=m;i++) in_edge[edge[i].to].push_back(i); for (int i=1;i<=n;i++) { virtual_tree::clear(); for (int j=0;j<in_edge[i].size();j++) virtual_tree::push(edge[in_edge[i][j]].s); for (int j=p[i];j;j=edge[j].nxt) virtual_tree::push(edge[j].s); virtual_tree::build(); for (int j=0;j<in_edge[i].size();j++) graph::addedge(in(in_edge[i][j]),virtual_tree::idin[edge[in_edge[i][j]].s],0); for (int j=p[i];j;j=edge[j].nxt) graph::addedge(virtual_tree::idout[edge[j].s],out(j),0); } graph::dijkstra(); for (int i=2;i<=n;i++) printf("%d\n",graph::dis[i]); } return 0; }