BZOJ3456 城市规划(多项式求逆)
设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*(i-j-1)/2,也即f[i]=2i*(i-1)/2-(i-1)!·Σf[j]·2(i-j)*(i-j-1)/2/(j-1)!/(i-j)!。显然是一个卷积形式,可以分治NTT。
进一步将式子化的更优美一点。设h[i]=2i*(i-1)/2,有f[i]=h[i]-(i-1)!·Σf[j]·h[i-j]/(j-1)!/(i-j)!。阶乘项也可以弄掉,设F[i]=f[i]/(i-1)!,H[i]=h[i]/(i-1)!,G[i]=h[i]/i!,则有F[i]=H[i]-ΣF[j]·G[i-j] (0<j<i),而G[0]=1,不妨设F[0]=H[0]=0,则H[i]=ΣF[j]·G[i-j] (0<=j<=i),标准的卷积。设F(x),G(x),H(x)为其各自的生成函数,则H(x)=F(x)·G(x)。H(x)和G(x)我们很容易就能算出来,所以求一发逆就有F(x)了。
预定本年度最弱智bug:定义了全局变量inv3预处理3的逆元,在主程序里给其赋值,写了int inv3=……。然后就盯着两份一模一样的代码调了一年。
upd:原来这个除了阶乘的东西就叫指数型生成函数?
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 540000 #define P 1004535809 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,f[N],g[N],h[N],fac[N],inv[N],r[N],tmp[N],inv3; int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } void DFT(int *a,int n,int g) { for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]); for (int i=2;i<=n;i<<=1) { int wn=ksm(g,(P-1)/i); for (int j=0;j<n;j+=i) { int w=1; for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P) { int x=a[k],y=1ll*w*a[k+(i>>1)]%P; a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P; } } } } void mul(int *a,int *b,int n,int op) { for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1); DFT(a,n,3),DFT(b,n,3); if (op==0) for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P; else for (int i=0;i<n;i++) a[i]=1ll*a[i]*(P+2-1ll*a[i]*b[i]%P)%P; DFT(a,n,inv3); int u=ksm(n,P-2); for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj3456.in","r",stdin); freopen("bzoj3456.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif n=read();inv3=ksm(3,P-2); fac[0]=fac[1]=1;for (int i=2;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; for (int i=2;i<=n;i++) inv[i]=1ll*inv[i-1]*inv[i]%P; for (int i=0;i<=n;i++) g[i]=1ll*ksm(2,(1ll*i*(i-1)>>1)%(P-1))*inv[i]%P,h[i]=1ll*g[i]*i%P; int t=1;while (t<=(n<<1)) t<<=1; f[0]=1; for (int i=2;i<=t;i<<=1) { for (int j=0;j<i;j++) tmp[j]=g[j]; mul(f,tmp,i<<1,1); for (int j=i;j<(i<<1);j++) f[j]=0; } for (int i=n+1;i<t;i++) f[i]=0; mul(f,h,t,0); cout<<1ll*f[n]*fac[n-1]%P; return 0; }