BZOJ3963 WF2011MachineWorks(动态规划+斜率优化+cdq分治)

  按卖出时间排序后,设f[i]为买下第i台机器后的当前最大收益,则显然有f[i]=max{f[j]+gj*(di-dj-1)+rj-pi},且若此值<0,应设为-inf以表示无法购买第i台机器。

  考虑优化,显然是一个斜率优化式子,设j转移优于k,则f[j]+gj(di-dj-1)+rj>f[k]+gk(di-dk-1)+rk,移项得(f[j]-gjdj-gj+rj)-(f[k]-gkdk-gk+rk)>di(gk-gj)。g没有单调性,于是cdq分治,按g排序建上凸壳即可。

  注意比较斜率时只能用long double,因为乘法会溢出。对于横坐标相同的点需要特判一下,如果加进去的点纵坐标较大就把之前的点弹掉。感觉每次写斜率优化对这种问题都毫无办法。复杂度O(nlogn)。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define inf 2000000000000000000ll
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int T,n,m,k,q[N];
struct data
{
    int d,p,r,g,i;ll ans;
    bool operator <(const data&a) const
    {
        return d<a.d;
    }
}a[N],b[N];
ll calc(int i){return a[i].ans-1ll*a[i].g*(a[i].d+1)+a[i].r;}
bool check(int x,int y,int i)
{
    if (a[i].g==a[y].g) return calc(i)>=calc(y);
    return (long double)(calc(i)-calc(y))/(a[i].g-a[y].g)>=(long double)(calc(y)-calc(x))/(a[y].g-a[x].g);
}
void solve(int l,int r)
{
    if (l>=r) return;
    int mid=l+r>>1;
    solve(l,mid);
    int head=1,tail=0;
    for (int i=l;i<=mid;i++)
    {
        while (tail>1&&check(q[tail-1],q[tail],i)) tail--;
        q[++tail]=i;
    }
    for (int i=mid+1;i<=r;i++)
    {
        while (head<tail&&calc(q[head+1])-calc(q[head])>-1ll*a[i].d*(a[q[head+1]].g-a[q[head]].g)) head++;
        if (calc(q[head])+1ll*a[q[head]].g*a[i].d-a[i].p>=0)
        a[i].ans=max(a[i].ans,calc(q[head])+1ll*a[q[head]].g*a[i].d-a[i].p);
    }
    solve(mid+1,r);
    int i=l,j=mid+1;
    for (int k=l;k<=r;k++)
    if (i<=mid&&a[i].g<a[j].g||j>r) b[k]=a[i++];
    else b[k]=a[j++];
    for (int k=l;k<=r;k++) a[k]=b[k];
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj3963.in","r",stdin);
    freopen("bzoj3963.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read(),m=read(),k=read();
    while (n)
    {
        for (int i=1;i<=n;i++) a[i].d=read(),a[i].p=read(),a[i].r=read(),a[i].g=read(),a[i].i=i;
        n++,a[n].d=k+1,a[n].p=a[n].r=a[n].g=0;
        sort(a+1,a+n+1);
        for (int i=1;i<=n;i++) a[i].ans=-inf;a[0].ans=m;
        solve(0,n);
        for (int i=1;i<=n;i++) a[0].ans=max(a[0].ans,a[i].ans);
        printf("Case ");printf("%d",++T);printf(": ");printf(LL,a[0].ans);
        n=read(),m=read(),k=read();
    }
    return 0;
}

 

posted @ 2019-01-15 01:53  Gloid  阅读(242)  评论(0编辑  收藏  举报