BZOJ4915 简单的数字题

  不妨设a1<a2<a3<a4。显然第一问的答案是4,满足a1+a4=a2+a3,a1+a2|a3+a4,a1+a3|a2+a4。容易发现将其同时扩大k倍是仍然满足条件的,于是考虑gcd(a1,a2,a3,a4)=1的情况。对于a1+a3|a2+a4,由a1+a4=a2+a3,可以发现a2+a4<3(a1+a3),因为2a3>a4且a2<a3,于是也就有a2+a4=2(a1+a3)。然后考虑a1+a2|a3+a4,为保证a2+a4=2(a1+a3),a2和a3大约至多在a1和a4的三等分点取得,于是a2+a4<5(a1+a3)。将a2+a4=4(a1+a3)和a2+a4=3(a1+a3)代入解方程即可,得到的都是和a1的整数倍关系,其中4倍时为1 11 19 29,3倍时为1 5 7 11(样例都很良心的给出来了)。那么合法集合就是这些数的倍数了。勉勉强强推出来了,发现这是个IMO题时非常震惊。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
ll l,r;
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj4915.in","r",stdin);
    freopen("bzoj4915.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    cin>>l>>r;
    cout<<4<<endl<<r/11-min(r/11,l-1)+r/29-min(r/29,l-1);
    return 0;
}

 

posted @ 2018-11-30 18:30  Gloid  阅读(230)  评论(0编辑  收藏  举报