BZOJ4890 Tjoi2017城市
显然删掉的边肯定是直径上的边。考虑枚举删哪一条。然后考虑怎么连。显然新边应该满足其两端点在各自树中作为根能使树深度最小。只要线性求出这个东西就可以了,这与求树的重心的过程类似。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 5010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,p[N],deep[N],fa[N],f[N],len[N],t,root,ans=N*N; bool flag[N]; struct data{int to,nxt,len; }edge[N<<1]; void addedge(int x,int y,int z){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=z,p[x]=t;} void dfs(int k) { for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=fa[k]) { deep[edge[i].to]=deep[k]+edge[i].len; fa[edge[i].to]=k; len[edge[i].to]=edge[i].len; dfs(edge[i].to); } } int dp(int k,int ban) { flag[k]=1; int mx=0,mx2=0,ans=0; for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]&&edge[i].to!=ban) { ans=max(ans,dp(edge[i].to,ban)); int x=f[edge[i].to]+edge[i].len; if (x>mx) mx2=mx,mx=x; else if (x>mx2) mx2=x; } f[k]=mx; return max(ans,mx+mx2); } int findroot(int k,int ban,int last) { int mx=0,mx2=0,l=0,len=0; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=fa[k]&&edge[i].to!=ban) { int x=f[edge[i].to]+edge[i].len; if (x>mx) mx2=mx,mx=x,l=edge[i].to,len=edge[i].len; else if (x>mx2) mx2=x; } if (max(last,mx2)+len<mx) return findroot(l,ban,max(last,mx2)+len); else return k; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj4890.in","r",stdin); freopen("bzoj4890.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif n=read(); for (int i=1;i<n;i++) { int x=read(),y=read(),z=read(); addedge(x,y,z),addedge(y,x,z); } dfs(1); int root=1;for (int i=2;i<=n;i++) if (deep[i]>deep[root]) root=i; fa[root]=deep[root]=0;dfs(root); int x=1;for (int i=2;i<=n;i++) if (deep[i]>deep[x]) x=i; while (x!=root) { memset(f,0,sizeof(f)); memset(flag,0,sizeof(flag)); int t=max(dp(root,x),dp(x,fa[x])); int u=findroot(root,x,0),v=findroot(x,fa[x],0); memset(f,0,sizeof(f)); memset(flag,0,sizeof(flag)); dp(u,x),dp(v,fa[x]); ans=min(ans,max(f[u]+f[v]+len[x],t)); x=fa[x]; } cout<<ans; return 0; }