BZOJ4883 棋盘上的守卫(环套树+最小生成树)

  容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点。那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点。显然每个点至少要连一条边。于是这个东西就必须是环套树森林了,并且显然其可以满足条件。现在要求的就是最小环套树森林。

  求法类似kruskal,只要连了这条边之后该连通块的边数<=点数就给他连上。显然这样得到的是环套树森林,至于为什么最小,证明方法也与kruskal类似,即如果当前边不冗余却不加,则需要另一条边来做等效(这里等效比较广义,比如树边可以与其端点连通块的环边等效)的事,而贪心过程说明不存在更小的这样的边了。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int n,m,t,fa[N],size[N],cnt[N];
ll ans;
struct data
{
    int x,y,z;
    bool operator <(const data&a) const
    {
        return z<a.z;
    }
}edge[N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj4883.in","r",stdin);
    freopen("bzoj4883.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read(),m=read();
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        t++,edge[t].x=i,edge[t].y=n+j,edge[t].z=read();
    sort(edge+1,edge+n*m+1);
    for (int i=1;i<=n+m;i++) fa[i]=i,size[i]=1,cnt[i]=0;
    for (int i=1;i<=n*m;i++)
    {
        int x=find(edge[i].x),y=find(edge[i].y);
        if (x!=y)
        {
            if (cnt[x]+cnt[y]+1<=size[x]+size[y])
            ans+=edge[i].z,fa[x]=y,size[y]+=size[x],cnt[y]+=cnt[x]+1;
        }
        else if (cnt[x]<size[x]) ans+=edge[i].z,cnt[x]++;
    }
    cout<<ans;
    return 0;
}

 

posted @ 2018-11-27 21:27  Gloid  阅读(272)  评论(0编辑  收藏  举报