BZOJ4860 Beijing2017树的难题(点分治+单调队列)
考虑点分治。对子树按照根部颜色排序,每次处理一种颜色的子树,对同色和不同色两种情况分别做一遍即可,单调队列优化。但是注意到这里每次使用单调队列的复杂度是O(之前的子树最大深度+该子树深度),一不小心就退化成O(n2)。于是我们按照同颜色最大深度为第一关键字、子树深度为第二关键字排序,每次处理完一种颜色再与之前的其他颜色合并,这样每次的复杂度就是其自身深度了。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<cassert> using namespace std; #define ll long long #define N 200010 #define inf 2100000000 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,l,r,p[N],a[N],mxdeep[N],colordeep[N],deep[N],size[N],len[N],f[N],g[N],q[N][2],Q[N],t,ans=-inf; bool flag[N]; struct data{int to,nxt,color; }edge[N<<1]; struct data2 { int x,y; bool operator <(const data2&a) const { return colordeep[y]<colordeep[a.y]||colordeep[y]==colordeep[a.y]&&y<a.y||colordeep[y]==colordeep[a.y]&&y==a.y&&mxdeep[x]<mxdeep[a.x]; } }v[N]; void addedge(int x,int y,int z){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].color=z,p[x]=t;} void make(int k,int from) { size[k]=1; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from&&!flag[edge[i].to]) { deep[edge[i].to]=deep[k]+1; make(edge[i].to,k); size[k]+=size[edge[i].to]; } } int findroot(int k,int s) { int mx=0; for (int i=p[k];i;i=edge[i].nxt) if (size[edge[i].to]<size[k]&&size[edge[i].to]>size[mx]&&!flag[edge[i].to]) mx=edge[i].to; if ((size[mx]<<1)>s) return findroot(mx,s); else return k; } void findmx(int k,int from,int root) { mxdeep[root]=max(mxdeep[root],deep[k]); for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from&&!flag[edge[i].to]) findmx(edge[i].to,k,root); } inline void ins(int k,int &head,int &tail,int *f){while (head<=tail&&f[Q[tail]]<f[k]) tail--;Q[++tail]=k;} inline void pop(int k,int &head,int &tail){while (head<=tail&&Q[head]>k) head++;} void bfs(int k,int last,int v,int d) { int head=0,tail=1;q[1][0]=k,q[1][1]=last; int h=1,t=0;for (int i=min(d,r);i>=l;i--) ins(i,h,t,g); do { int x=q[++head][0];if (deep[x]>=l&&deep[x]<=r) ans=max(ans,len[x]); if (deep[x]>deep[q[head-1][0]]) { pop(r-deep[x],h,t); if (l-deep[x]>=0&&l-deep[x]<=d) ins(l-deep[x],h,t,g); } if (h<=t) ans=max(ans,len[x]+g[Q[h]]+v); for (int i=p[x];i;i=edge[i].nxt) if (deep[edge[i].to]>deep[x]&&!flag[edge[i].to]) { len[edge[i].to]=len[x]; if (edge[i].color!=q[head][1]) len[edge[i].to]+=a[edge[i].color]; q[++tail][0]=edge[i].to,q[tail][1]=edge[i].color; } }while (head<tail); } void update(int k,int from) { g[deep[k]]=max(g[deep[k]],len[k]); for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from&&!flag[edge[i].to]) update(edge[i].to,k); } void solve(int k) { make(k,k);k=findroot(k,size[k]); flag[k]=1;deep[k]=0;make(k,k); int cnt=0; for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]) { colordeep[edge[i].color]=mxdeep[edge[i].to]=0,findmx(edge[i].to,edge[i].to,edge[i].to); cnt++,v[cnt].x=edge[i].to,v[cnt].y=edge[i].color; } for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]) colordeep[edge[i].color]=max(colordeep[edge[i].color],mxdeep[edge[i].to]); sort(v+1,v+cnt+1); for (int i=1;i<=cnt;i++) { int t=i-1,d=0; while (t<cnt&&v[t+1].y==v[i].y) { len[v[++t].x]=a[v[i].y]; bfs(v[t].x,v[t].y,-a[v[i].y],d); update(v[t].x,v[t].x);d=mxdeep[v[t].x]; } int H=1,T=0;for (int j=min(colordeep[v[i-1].y],r);j>=l;j--) ins(j,H,T,f); for (int j=1;j<=d;j++) { pop(r-j,H,T); if (l>=j&&l-j<=d) ins(l-j,H,T,f); if (H<=T) ans=max(ans,g[j]+f[Q[H]]); } for (int j=0;j<=d;j++) f[j]=max(f[j],g[j]),g[j]=-inf; i=t; } for (int i=0;i<=mxdeep[v[cnt].x];i++) f[i]=-inf; for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]) solve(edge[i].to); } int main() { #ifndef ONLINE_JUDGE freopen("bzoj4860.in","r",stdin); freopen("bzoj4860.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif n=read(),m=read(),l=read(),r=read(); for (int i=0;i<=n;i++) f[i]=g[i]=-inf; for (int i=1;i<=m;i++) a[i]=read(); for (int i=1;i<n;i++) { int x=read(),y=read(),z=read(); addedge(x,y,z),addedge(y,x,z); } solve(1); cout<<ans; return 0; }