poj 2104 K-th Number (划分树)

K-th Number
Time Limit: 20000MS   Memory Limit: 65536K
Total Submissions: 68467   Accepted: 24208
Case Time Limit: 2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

 

PS:求指定区域内第K大的数

 

C/C++:

 1 #include <map>
 2 #include <queue>
 3 #include <cmath>
 4 #include <vector>
 5 #include <string>
 6 #include <cstdio>
 7 #include <cstring>
 8 #include <climits>
 9 #include <iostream>
10 #include <algorithm>
11 #define INF 0x3f3f3f3f
12 using namespace std;
13 const int MAXN = 1e5 + 10;
14 int a, b, k, N, M, Sorted[MAXN], Tree[30][MAXN], Toleft[30][MAXN];
15 
16 void Build(int Lef, int Rig, int dep)
17 {
18     if (Lef == Rig) return;
19     int Mid = (Lef + Rig) >> 1;
20     int Same = Mid - Lef + 1;
21     for (int i = Lef; i <= Rig; ++ i)
22         if (Tree[dep][i] < Sorted[Mid]) -- Same;
23     int Lpos = Lef, Rpos = Mid + 1;
24     for (int i = Lef; i <= Rig; ++ i)
25     {
26         if (Tree[dep][i] < Sorted[Mid])
27             Tree[dep + 1][Lpos ++] = Tree[dep][i];
28         else if (Tree[dep][i] == Sorted[Mid])
29         {
30             Tree[dep + 1][Lpos ++] = Tree[dep][i];
31             -- Same;
32         }
33         else
34             Tree[dep + 1][Rpos ++] = Tree[dep][i];
35         Toleft[dep][i] = Toleft[dep][Lef - 1] + Lpos - Lef;
36     }
37     Build(Lef, Mid, dep + 1);
38     Build(Mid + 1, Rig, dep + 1);
39 }
40 
41 int Query(int Lef, int Rig, int l, int r, int dep, int k)
42 {
43     if (l == r) return Tree[dep][l];
44     int Mid = (Lef + Rig) >> 1;
45     int Cnt = Toleft[dep][r] - Toleft[dep][l - 1];
46     if (Cnt >= k)
47     {
48         int newL = Lef + Toleft[dep][l - 1] - Toleft[dep][Lef - 1];
49         int newR = newL + Cnt - 1;
50         return Query(Lef, Mid, newL, newR, dep + 1, k);
51     }
52     else
53     {
54         int newR = r + Toleft[dep][Rig] - Toleft[dep][r];
55         int newL = newR - (r - l - Cnt);
56         return Query(Mid + 1, Rig, newL, newR, dep + 1, k - Cnt);
57     }
58 }
59 
60 int main()
61 {
62     while (~scanf("%d%d", &N, &M))
63     {
64         for (int i = 1; i <= N; ++ i)
65         {
66             scanf("%d", &Tree[0][i]);
67             Sorted[i] = Tree[0][i];
68         }
69         sort(Sorted + 1, Sorted + 1 + N);
70         Build(1, N, 0);
71         for (int i = 1; i <= M; ++ i)
72         {
73             scanf("%d%d%d", &a, &b, &k);
74             printf("%d\n", Query(1, N, a, b, 0, k));
75         }
76     }
77 }

 

posted @ 2018-08-28 22:52  GetcharZp  阅读(92)  评论(0编辑  收藏  举报